
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

 
  CS8603 DISTRIBUTED SYSTEMS 

 TAPESTRY 

 
 

 Tapestry is a decentralized distributed system. 

 It is an overlay network that implements simple key-based routing. 

 It is a prototype of a decentralized, scalable, fault-tolerant, adaptive location and 

routing infrastructure 

 Each node serves as both an object store and a router that applications can contact to 

obtain objects. 

 In a Tapestry network, objects are published at nodes, and once an object has been 

successfully published, it is possible for any other node in the network to find the 

location at which that object is published. 

 The difference between Chord and Tapestry is that in Tapestry the application 

chooses where to store data, rather than allowing the system to choose a node to store 

the object at. 

 The application only publishes a reference to the object. 

 The Tapestry P2P overlay network provides efficient scalable location independent 

routing to locate objects distributed across the Tapestry nodes. 

 The hashed node identifiers are termed VIDs (Virtual ID) and the hashed object 

identifiers are termed as GUIDs (Globally Unique ID). 

Routing and Overlays 
 

 

 It is a middleware that takes the form of a layer which processes the route requests from 

Tapestry is a peer-to-peer overlay network which provides a distributed hash table, 

routing, and multicasting infrastructure for distributed applications. The Tapestry peer- 

to-peer system offers efficient, scalable, self-repairing, location-aware routing to nearby 

resources. 

Routing and overlay are the terms coined for looking objects and nodes in any 

distributed system. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

the clients to the host that holds the objects. 

 The objects can be placed and relocated without the information from the clients. 

Functionalities of routing overlays: 

 A client requests an object with GUID to the routing overlay, which routes the request 

to a node at which the object replica resides. 

 A node that wishes to make the object available to peer-to-peer service computes the 

GUID for the object and announces it to the routing overlay that ensures that the object 

is reachable by all other clients. 

 When client demands object removal, then the routing overlays must make them 

unavailable. 

 Nodes may join or leave the service. 

Routing overlays in Tapestry 

 Tapestry implements Distributed Hash Table (DHT) and routes the messages to the nodes 

based on GUID associated with resources through prefix routing. 

 Publish (GUID) primitive is issued by the nodes to make the network aware of its 

possession of resource. 

 Replicated resources also use the same publish primitive with same GUID. This results 

in multiple routing entries for the same GUID. 

 This offers an advantage that the replica of objects is close to the frequent users to avoid 

latency, network load, improve tolerance and host failures. 

Roots and Surrogate roots 

 Tapestry uses a common identifier space specified using m bit values and presently 

Tapestry recommends m = 160. 

 Each identifier OG in this common overlay space is mapped to a set of unique nodes that 

exists in the network, termed as the identifier’s root set denoted OGR. 

 If there exists a node v such that vid = OGR, then v is the root of identifier OG. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

 
  CS8603 DISTRIBUTED SYSTEMS 

 If such a node does not exist, then a globally known deterministic rule is used to 

identify another unique node sharing the largest common prefix with OG, that acts as the  

surrogate root. 

 To access object O, the goal is to reach the root OGR. 

 Routing to OGR is done using distributed routing tables that are constructed using prefix 

routing information. 

Prefix Routing 
 

 Let M = 2m. The routing table at node vid contains b · logb M entries, organized in logb M 

levels i = 1,…, logb M. 

 Each entry is of the form <wid, IP address>. 

 The following is the property of entry (b) at level i: 

Each entry denotes some neighbor node VIDs with an (i – 1) digit prefix match with v id 

. Further, in level i, for each digit j in the chosen base, there is an entry for which the ith 

digit position is j. The jth entry (counting from 0) in level i has value j for digit position i. 

Let an i digit prefix of vid be denoted as prefix (vid, i). Then the jth entry (counting from 

0) in level i begins with an i-digit prefix prefix (vid,i– 1). j. 

Routing Table 

 The nodes in the router table at vid are the neighbors in the overlay, and these are 

exactly the nodes with which vid communicates. 

 For each forward pointer from node v to v’, there is a backward pointer from v’ to 

v. 

 There is a choice of which entry to add in the router table. The jth entry in level i can 

be the VID of any node whose i-digit prefix is determined; the (m – i) digit suffix can 

vary. 

Prefix routing at any node to select the next hop is done by increasing the prefix match 

of the next hop’s VID with the destination OGR. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 The flexibility is useful to select a node that is close, as defined by some metric 

space. 

 This choice also allows a more fault-tolerant strategy for routing. 

 Multiple VIDs can be stored in the routing table. 

 The jth entry in level i may not exist because no node meets the criterion. This is a 

hole in the routing table. 

 Surrogate routing can be used to route around holes. If the jth entry in level i should 

be chosen but is missing, route to the next non-empty entry in level i, using 

wraparound if needed. 

 All the levels from 1 to logb 2m need to be considered in routing, thus requiring 

logb2
m hops. 

(variables) 

Integer Table[1…logb2
m, 1….b]; //routing table 

(1) NEXT_HOP(i, OG = d1 o d2 … o dlogbm) executed at node vid to 

route to OG: 

// i is (1 + Length of longest common prefix), also level of the table 

(1a) while Table[i, di] = do // dj is the ith digit of destination 

(1b) di  (di+1) mod b; 

(1c) if Table[i, di] = v then // node v also acts as next hop 

// (special case) 

(1d) return (NEXT_HOP(i+1, OG) // locally examine next digit of 

//destination 

(1e) else return (Table[i, di]). // node Table[i, di] is next hop 

Fig : NEXT_HOP(i, OG) 

Object Publication and object searching 

 The unique spanning tree used to route to vid is used to publish and locate an object 

whose unique root identifier OGR is vid. 

 A server S that stores object O having GUID OG and root OGR periodically publishes 

the object by routing a publish message from S towards OGR. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

 
  CS8603 DISTRIBUTED SYSTEMS 

 At each hop and including the root node OGR, the publish message creates a pointer to 

the object. 

 Each node between O and OGR must maintain a pointer to O despite churn. 

 If a node lies on the path from two or more servers storing replicas, that node will  

store a pointer to each replica, sorted in terms of a distance metric. 

 This is the directory information for objects, and is maintained as a soft-state, i.e., it 

requires periodic updates from the server, to deal with changes and to provide fault-

tolerance. 

 To search for an object O with GUID OG, a client sends a query destined for the root 

OGR 

 Along the logb 2
m hops, if a node finds a pointer to the object residing on server S, the 

node redirects the query directly to S. Otherwise, it forwards the query towards the root 

OGR which is guaranteed to have the pointer for the location mapping. 

 A query gets redirected directly to the object as soon as the query path overlaps the 

publish path towards the same root. 

 Each hop towards the root reduces the choice of the selection of its next node by a 

factor of b; hence, the more likely by a factor of b that a query path and a publish path 

will meet. 

 As the next hop is chosen based on the network distance metric whenever there is a 

choice, it is observed that the closer the client is to the server in terms of the distance 

metric, the more likely that their paths to the object root will meet sooner, and the 

faster the query will be redirected to the object. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

 

Fig : Publishing of object with identifier 72EA1 at two replicas 1F329 and C2B40 Node Insertion 

 When nodes join the network, the result should be the same as though the network and 

the routing tables had been initialized with the nodes as part of the network. 

 The procedure for the insertion of node X should maintain the following property of 

Tapestry: For any node Y on the path between a publisher of object O and the root 

OGR, node Y should have a pointer to O. 

Properties for node insertion: 

 Nodes that have a hole in their routing table should be notified if the insertion of node X can 

fill that hole. 

 If X becomes the new root of existing objects, references to those objects should now lead to 

X. 

 The routing table for node X must be constructed. 

 The nodes near X should include X in their routing tables to perform more efficient routing. 

Steps in insertion 

 Node X uses some gateway node into the Tapestry network to route a message to itself. 

This leads to its surrogate, i.e., the root node with identifier closest to that of itself 

(which is Xid). The surrogate Z identifies the length  of the longest common prefix 

that Zid shares with Xid. 

 Node Z initiates a MULTICAST-CONVERGECAST on behalf of X by creating a 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

 
  CS8603 DISTRIBUTED SYSTEMS 

logical spanning tree as follows. Acting as a root, Z contacts all the (, j) nodes, for all 

j ∈ {0, 1, …, b – 1}. 

 These are the nodes with prefix followed by digit j. Each such (level 1) node Z1 

contacts all the prefix ((Z1, || + 1),j) nodes, for all j ∈ {0, 1,…,b – 1}. This continues up 

to level logb2
m and completes the MULTICAST. 

 The nodes at this level are the leaves of the tree, and initiate the CONVERGECAST, 

which also helps to detect the termination of this phase. 

 The insertion protocols are fairly complex and deal with concurrent insertions. 

Node Deletion 

When a node A leaves the Tapestry overlay: 

1. Node A informs the nodes to which it has back pointers. It also provides them with 

replacement entries for each level from its routing table. This is to prevent holes in 

their routing tables. 

2. The servers to which A has object pointers are also notified. The notified servers 

send object republish messages. 

3. During the above steps, node A routes messages to objects rooted at itself to their new 

roots. On completion of the above steps, node A informs the nodes reachable via its 

back pointers and forward pointers that it is leaving, and then leaves. 

 Node failures are handled by using the redundancy that is built in to the routing 

tables and object location pointers. 

 A node X detects a failure of another node A by using soft-state beacons or when a 

node sends a message but does not get a response. 

 Node X updates its routing table entry for A with a suitable substitute node, running  

the nearest neighbor algorithm if necessary. 

 If A’s failure leaves a hole in the routing table of X, then X contacts the suggorate of A 

in an effort to identify a node to fill the hole. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 To repair the routing mesh, the object location pointers also have to be adjusted. 

 Objects rooted at the failed node may be inaccessible until the object is 

republished. 

 The protocols for doing so essentially have to: 

i) maintain path availability 

ii) optionally collect garbage/dangling pointers that would otherwise persist until 

the next soft-state refresh and timeout 

Complexity 

 A search for an object is expected to take logb2
m hops. The routing tables are 

optimized to identify nearest neighbor hops. 

 The size of the routing table at each node is c · b · logb2
m where c is the constant 

that limits the size of the neighbor set that is maintained for fault-tolerance. 


	TAPESTRY
	Routing and Overlays
	Functionalities of routing overlays:
	Routing overlays in Tapestry
	Roots and Surrogate roots
	Prefix Routing
	Routing Table
	Fig : NEXT_HOP(i, OG)
	Fig : Publishing of object with identifier 72EA1 at two replicas 1F329 and C2B40 Node Insertion
	Properties for node insertion:
	Steps in insertion
	Node Deletion
	Complexity

