5.4 SOLUTION OF STATE EQUATIONS

Solution of homogeneous state equations (solution of state equations without input or excitation)

Consider a first order differential equation, with initial condition, $\mathrm{x}(0)=\mathrm{x}_{0}$.
$\frac{d x}{d t}=a x ; x(0)=x_{0}$
On rearranging equation we get $\frac{d x}{x}=a d t$ integrating the equation we get, $\log x=a t+$ c

$$
x=e^{(a t+c)}=e^{a t} \cdot e^{c}
$$

When $\mathrm{t}=0, x=x(0)=e^{c}$
Given that, $x(0)=\mathrm{x}_{0} \therefore e^{c}=x_{0}$
The solution of first order differential equation as,

$$
x=e^{a t} x_{0}
$$

We know that, $e^{x}=\left[1+x+\frac{1}{2!} x^{2}+\cdots+\frac{1}{i!} x^{i}\right]$

$$
x=\left[1+a t+\frac{1}{2!}(a t)^{2}+\cdots+\frac{1}{i!}(a t)^{i}\right] x_{0}
$$

Consider the state equations without input vector,
$\dot{X}(t)=A X(t) ; \mathrm{x}(0)=\mathrm{x}_{0}$.
The solution of the matrix or vector equation can be assumed

$$
X(t)=A_{0}+A_{1} t+A_{2} t^{2}+\cdots
$$

Where $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots . \mathrm{A}_{\mathrm{i}}$ are matrices and the elements of the matrices are constant.

$$
X(t)=\left[I+A t+\frac{1}{2!} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots \frac{1}{i!} A^{i} t^{i}\right] A_{0}
$$

Where I is the unit matrix.
Matrix exponential may be written as,

$$
e^{A t}=\left[I+A t+\frac{1}{2!} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots \frac{1}{i!} A^{i} t^{i}\right]
$$

Hence the solution of the state equation is

$$
X(t)=e^{A t} x_{0}
$$

The matrix $e^{A t}$ is alled state transition matrix and denoted by $\varphi(\mathrm{t})$.

PROPERTIES OF STATE TRANSITION MATRIX

1. $\varphi(0)=e^{A x 0}=I$
2. $\varphi(t)=e^{A t}=\left(e^{-A t}\right)^{-1}=[\varphi(-t)]^{-1}$
3. $\varphi\left(t_{1}+t_{2}\right)=e^{A\left(t_{1}+t_{2}\right)}=\left(e^{A t_{1}}\right)\left(e^{A t_{2}}\right)=\varphi\left(t_{1}\right) \varphi\left(t_{2}\right)$

COMPUTATION OF STATE TRANSISTION MATRIX

Method 1: Computation of $e^{A t}$ using matrix exponential
In this method the $e^{A t}$ is computed using the matrix exponential of equation

$$
e^{A t}=\left[I+A t+\frac{1}{2!} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots \frac{1}{i!} A^{i} t^{i}\right]
$$

Where,
$e^{A t}=$ state transition matrix of order $\mathrm{n} \times \mathrm{n}$
$\mathrm{A}=$ System matrix of order $\mathrm{n} \times \mathrm{n}$
$\mathrm{I}=$ Unit matrix of order $\mathrm{n} \times \mathrm{n}$
Method 2: Computation of state transition matrix by Laplace transforms method
Consider the state equation without input vector $\dot{X}(t)=A X(t)$
On taking Laplace transform of above equation,

$$
X(s)=(s I-A)^{-1} X(0)
$$

On taking inverse Laplace transform

$$
X(t)=L^{-1}\left[(s I-A)^{-1}\right] X(0)
$$

On comparing above equation with state equation

$$
\begin{gathered}
X(t)=e^{A t} x_{0} \\
e^{A t}=L^{-1}\left[(s I-A)^{-1}\right] \\
L\left[e^{A t}\right]=L[\varphi(t)]=\varphi(s)
\end{gathered}
$$

Where $\varphi(s)=(s I-A)^{-1}$ it is called resolvant matrix

