
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

LEXICAL ANALYSIS

As the first phase of a compiler, the main task of the lexical analyzer is to read the input
characters of the source program, group them into lexemes, and produce as output tokens for each
lexeme in the source program. This stream of tokens is sent to the parser for syntax analysis. It is
common for the lexical analyzer to interact with the symbol table as well.

When the lexical analyzer discovers a lexeme constituting an identifier, it needs to enter that
lexeme into the symbol table. This process is shown in the following figure.

Figure : Lexical Analyzer

. When lexical analyzer identifies the first token it will send it to the parser, the parser receives
the token and calls the lexical analyzer to send next token by issuing the getNextToken() command. This
Process continues until the lexical analyzer identifies all the tokens. During this process the lexical
analyzer will neglect or discard the white spaces and comment lines.

TOKENS, PATTERNS AND LEXEMES:

A token is a pair consisting of a token name and an optional attribute value. The token name is an
abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a sequence of input
characters denoting an identifier. The token names are the input symbols that the parser processes. In
what follows, we shall generally write the name of a token in boldface. We will often refer to a token by
its token name.

A pattern is a description of the form that the lexemes of a token may take [or match]. In the case of a
keyword as a token, the pattern is just the sequence of characters that form the keyword. For identifiers
and some other tokens, the pattern is a more complex structure that is matched by many strings.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

A lexeme is a sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token.

Example: In the following C language statement , printf

("Total = %d\n‖, score) ;

both printf and score are lexemes matching the pattern for token id, and "Total = %d\n‖ is a lexeme
matching literal [or string].

Figure 1.7: Examples of Tokens

LEXICAL ANALYSIS Vs PARSING:

There are a number of reasons why the analysis portion of a compiler is normally separated into lexical
analysis and parsing (syntax analysis) phases.

 1. Simplicity of design is the most important consideration. The separation of Lexical and Syntactic
analysis often allows us to simplify at least one of these tasks. For example, a parser that had to
deal with comments and whitespace as syntactic units would be considerably more complex
than one that can assume comments and whitespace have already been removed by the lexical
analyzer.

 2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply specialized
techniques that serve only the lexical task, not the job of parsing. In addition, specialized
buffering techniques for reading input characters can speed up the compiler significantly.

 3. Compiler portability is enhanced: Input-device-specific peculiarities can be
restricted to the lexical analyzer.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

INPUT BUFFERING:

Before discussing the problem of recognizing lexemes in the input, let us examine some ways
that the simple but important task of reading the source program can be speeded. This task is made
difficult by the fact that we often have to look one or more characters beyond the next lexeme before
we can be sure we have the right lexeme. There are many situations where we need to look at least one
additional character ahead. For instance, we cannot be sure we've seen the end of an identifier until we
see a character that is not a letter or digit, and therefore is not part of the lexeme for id. In C, single-
character operators like -, =, or < could also be the beginning of a two-character operator like ->, ==,
or <=. Thus, we shall introduce a two-buffer scheme that handles large look aheads safely. We then
consider an improvement involving "sentinels" that saves time checking for the ends of buffers.

Buffer Pairs

Because of the amount of time taken to process characters and the large number of characters that
must be processed during the compilation of a large source program, specialized buffering techniques
have been developed to reduce the amount of overhead required to process a single input character. An
important scheme involves two buffers that are alternately reloaded.

Figure : Using a Pair of Input Buffers

Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 4096 bytes. Using
one system read command we can read N characters in to a buffer, rather than using one system call
per character. If fewer than N characters remain in the input file, then a special character, represented
by eof, marks the end of the source file and is different from any possible character of the source
program.

 Two pointers to the input are maintained:

1. The Pointer lexemeBegin, marks the beginning of the current lexeme, whose extent we
are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found; the exact strategy whereby
this determination is made will be covered in the balance of this chapter.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

Once the next lexeme is determined, forward is set to the character at its right end. Then, after

the lexeme is recorded as an attribute value of a token returned to the parser, 1exemeBegin is set to the

character immediately after the lexeme just found. In Fig, we see forward has passed the end of the

next lexeme, ** (the FORTRAN exponentiation operator), and must be retracted one position to its left.

Advancing forward requires that we first test whether we have reached the end of one of the

buffers, and if so, we must reload the other buffer from the input, and move forward to the beginning

of the newly loaded buffer. As long as we never need to look so far ahead of the actual lexeme that the

sum of the lexeme's length plus the distance we look ahead is greater than N, we shall never overwrite

the lexeme in its buffer before determining it.

Sentinels To Improve Scanners Performance:

If we use the above scheme as described, we must check, each time we advance forward, that

we have not moved off one of the buffers; if we do, then we must also reload the other buffer. Thus, for

each character read, we make two tests: one for the end of the buffer, and one to determine what

character is read (the latter may be a multi way branch). We can combine the buffer-end test with the

test for the current character if we extend each buffer to hold a sentinel character at the end. The

sentinel is a special character that cannot be part of the source program, and a natural choice is the

character eof. Figure 1.8 shows the same arrangement as Figure 1.7, but with the sentinels added. Note

that eof retains its use as a marker for the end of the entire input.

Figure : Sentential at the end of each buffer

Any eof that appears other than at the end of a buffer means that the input is at an end. Figure 1.9
summarizes the algorithm for advancing forward. Notice how the first test, which can be part of

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

a multiway branch based on the character pointed to by forward, is the only test we make, except in the
case where we actually are at the end of a buffer or the end of the input.

switch (*forward++)

{

case eof: if (forward is at end of first buffer)

{

reload second buffer;

forward = beginning of second buffer;

}

else if (forward is at end of second buffer)

{

break;

}

reload first buffer;

forward = beginning of first buffer;

}

else /* eof within a buffer marks the end of input */

terminate lexical analysis;

Figure: use of switch-case for the sentential

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

