UNIT - III

NUMERICAL DIFFERENTIATION AND INTEGRATION

PROBLEMS BASED ON TRAPEZOIDAL RULE AND SIMPSON'S RULE

Trapezoidal rule

$$\int f(x)dx = \frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + y_3 \dots y_{n-1})]$$

1. Evaluate
$$\int_{0}^{1} \frac{1}{1+x^{2}} dx \text{ with } h = \frac{1}{6} \text{ by Trapezoidal Rule}$$

Solution: Let
$$f(x) = \frac{1}{1 + x^2}$$
 and $h = \frac{1}{6}$

x	0	$\frac{1}{6}$	2 6	3 6	4 6	5 - 6	1
y = f(x)	1	$\frac{36}{37}$	$\frac{9}{10}$	4 5	9 13	$\frac{36}{61}$	1/2

MA8491 NUMERICAL METHODS

$$f(x) = \frac{1}{1+x^2}$$

$$f(0) = \frac{1}{1+0^2} = \frac{1}{1+0} = 1$$

$$f\left(\frac{1}{6}\right) = \frac{1}{1+\frac{1}{36}} = \frac{1}{\frac{36+1}{36}} = \frac{36}{37}$$

$$f\left(\frac{2}{6}\right) = \frac{1}{1+\frac{4}{36}} = \frac{1}{\frac{36+4}{36}} = \frac{36}{40} = \frac{9}{10}$$

By Trapezoidal Rule

MA8491 NUMERICAL METHODS

2. Evaluate
$$\int_{1}^{2} \frac{1}{1+x^2} dx$$
 with four sub intervals

by Trapezoidal Rule Solution:

Let
$$y = f(x) = \frac{1}{1+x^2}$$
 and $h = \frac{2-1}{4} = \frac{1}{4} = 0.25$

x	1	1.25	1.5	1.75	2
y = f(x)	0.5	0.3902	0.3077	0.2462	0.2

$$f(x) = \frac{1}{1 + x^2}$$

$$f(1) = \frac{1}{1+1^2} = \frac{1}{1+1} = \frac{1}{2} = 0.5$$

$$f(1.25) = \frac{1}{1 + (1.25)^2} = 0.3902$$

$$OESERVE$$
 $f(1.5) = \frac{1}{1 + (1.5)^2} = 0.3077$

Trapezoidal Rule

$$\int f(x)dx = \frac{h}{2}[(y_0 + y_n) + 2(y_1 + y_2 + y_3 \dots y_{n-1})]$$

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \frac{0.25}{2} [(0.5+0.2)+2(0.3902+0.3077+0.2462)]$$

$$= 0.125[(0.7)+2(0.9441)]$$

$$= 0.125[2.5882] = 0.3235$$

$$OBSERVE OPTIMIZE OUTSPREAD$$

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Using Trapezoidal rule, evaluate $\int_{-1}^{1} \frac{1}{(1+x^2)} dx$ by taking eight equal intervals. (MJ13)

Solution: Let
$$y = y(x) = f(x) = \frac{1}{1 + x^2}$$

Lenth of the given interval [a, b] = b - a = 1 - (-1) = 2

Lenth of the 8 equal intervals = $h = \frac{2}{8} = 0.25$

Form the table for the ordinates of the function $y = y(x) = f(x) = \frac{1}{1 + x^2}$

х	-1	-0.75	-0.5	-0.25	0	0.25	0.5	0.75	1
$y = \frac{1}{1 + x^2}$	0.5	0.64	0.8	0.94118	1	0.94118	0.8	0.64	0.5
	<i>y</i> ₀	<i>y</i> 1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> 5	<i>y</i> 6	y 7	<i>y</i> 8

$$\int_{x_0}^{x_0+nh} f(x)dx = \begin{cases} \frac{h}{2} \left[(\text{first term} + \text{last term}) + 2 (\text{remaining terms}) \right] \\ (\text{or}) \\ \frac{h}{2} \left[(y_0 + y_n) + 2 (y_1 + y_2 + y_3 + \dots + y_{n-1}) \right] \end{cases}$$

$$= \frac{h}{2} \left[(y_0 + y_8) + 2 (y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7) \right]$$

$$= \frac{0.2}{2} \left[(0.5 + 0.5) + 2 (0.64 + 0.8 + 0.94118 + 1 + 0.94118 + 0.8 + 0.64) \right]$$

$$\equiv 1.56559$$

OBSERVE OPTIMIZE OUTSPREAD

Simpson's $\frac{1}{3}$ rule

$$\int f(x)dx = \frac{h}{2}[(y_0 + y_n) + 2(y_2 + y_4 + y_6 + \cdots) + 4(y_1 + y_3 + y_5 \cdots)]$$

1. Evaluate
$$\int_{0}^{1} \frac{1}{1+x^{2}} dx \text{ with } h = \frac{1}{6} \text{ by Simpson's } \frac{1}{3} \text{ rule}$$

COMPER

Solution:

Let
$$f(x) = \frac{1}{1+x^2}$$
 and $h = \frac{1}{6}$

x	0	$\frac{1}{6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
y	1	36 37	9 4 9 36 1 1 2 1 3 UT SPR 61 2

$$f(x) = \frac{1}{1+x^2}$$

$$f(0) = \frac{1}{1+x^2} = \frac{1}{1+0} = 1$$

$$f\left(\frac{1}{6}\right) = \frac{1}{1+\frac{1}{36}} = \frac{1}{\frac{36+1}{36}} = \frac{36}{37}$$

$$f\left(\frac{2}{6}\right) = \frac{1}{1+\frac{4}{36}} = \frac{1}{\frac{36+4}{36}} = \frac{36}{40} = \frac{9}{10}$$

x	0	$\frac{1}{6}$	$\frac{2}{6}$	3 6	<u>4</u> 6	5 6	'1'G
у	1	$\frac{36}{37}$	$\frac{9}{10}$	4 5	9 13	$\frac{36}{61}$	$\frac{1}{2}$
	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	y ₄ —	<i>y</i> ₅	<i>y</i> ₆

By Simpson's $\frac{1}{3}$ rule

$$\int f(x)dx = \frac{h}{2}[(y_0 + y_n) + 2(y_2 + y_4 + y_6 + \cdots) + 4(y_1 + y_3 + y_5 \cdots)]$$

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \frac{1/6}{2} \left[\left(1 + \frac{1}{2}\right) + 2\left(\frac{9}{10} + \frac{9}{13}\right) + 4\left(\frac{36}{37} + \frac{4}{5} + \frac{36}{61}\right) \right]$$

$$= \frac{1}{12} \left[\left(\frac{3}{2}\right) + 2\left(1,5923\right) + 4\left(2,3632\right) \right]$$

$$= \frac{1}{12} \left[\left(\frac{3}{2}\right) + 3.1846 + 9.4528 \right]$$

$$= \frac{1}{12} \left[\left(\frac{3}{2} \right) + 12.6374 \right]$$
$$= 1.1781$$

2. Evaluate
$$\int_{1}^{2} \frac{1}{1+x^{2}} dx \text{ with Four sub interval}$$

by Simpson's $\frac{1}{3}$ rule

Solution:

Let
$$f(x) = \frac{1}{1+x^2}$$
 and $h = \frac{2-1}{4} = \frac{1}{4} = 0.25$

x	1	1.25	1.5	1.75	-1
у	0.5	0.3902	0.3077	0.2462	0.2
	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄

OBSERVE OPTIMIZE OUTSPREAD

KULAM, KANYAKU

$$f(x) = \frac{1}{1+x^2}$$

$$f(1) = \frac{1}{1+x^2} = \frac{1}{1+1} = \frac{1}{2} = 0.5$$

$$f(1.25) = \frac{1}{1+(1.25)^2} = 0.3902$$

$$f(1.5) = \frac{1}{1+(1.5)^2} = 0.3077$$

Simpson's
$$\frac{1}{3}$$
 rule

$$\int f(x)dx = \frac{h}{2}[(y_0 + y_n) + 2(y_2 + y_4 + y_6 + \cdots) + 4(y_1 + y_3 + y_5 \cdots)]$$

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \frac{0.25}{2} \left[\left((0.5+0.2) \right) + 2(0.3077) + 4(0.3902+0.2462) \right]$$

$$= 0.125[(0.7) + 0.6154 + 2.5456]$$

$$= 0.125[3.861]$$

$$= 0.4826$$

ALKULAM, KANYAKUMAR

OBSERVE OPTIMIZE OUTSPREAD

A curve passes through the points (1,2), (1.5,2.4), (2,2.7), (2.5,2.8), (3,3), (3.5,2.6) & (4,2.1). Obtain Area bounded by the curve, x axis between x=1 and x=4. Also find the volume of solids of revolution by revolving this area about x- axis.

Solution:

WKT, Area =
$$\int_{a}^{b} y dx = \int_{1}^{4} y dx$$

Simpson's 1/3 rule, Area = $\int_{1}^{4} y dx = \frac{h}{3} [(y_0 + y_6) + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4)]$
= 7.783
Volume = $\pi \int_{a}^{b} y^2 dx = \pi \int_{1}^{4} y^2 dx$

To find y^2 :

x	1	1.5	2	2.5	3	3.5	4
у	2	2.4	2.7	2.8	3	2.6	2.1
y^2	4	5.76	7.29	7.84	9	6.76	4.41

$$\therefore \text{ Volume } = \pi \int_{1}^{4} y^{2} dx = \pi \left\{ \frac{h}{3} \left[\left(y_{0}^{2} + y_{6}^{2} \right) + 4 \left(y_{1}^{2} + y_{3}^{2} + y_{5}^{2} \right) + 2 \left(y_{2}^{2} + y_{4}^{2} \right) \right] \right\}$$

[by Simpson's 1/3 rule]

= 64.07 cubic units

Numerical integration using Simpson's 3/8 rule

Simpson's three eighth rule (Simpson's 3/8 rule) (n = 3 in quadratic form)

$$\int_{x_0+nh}^{x_0+nh} f(x) dx = \begin{cases} \frac{3h}{8} \begin{bmatrix} (y_0 + y_n) \\ +2(y_3 + y_6 + \cdots) \\ +3(y_1 + y_2 + y_4 + y_5 + y_7 + \cdots) \end{bmatrix} \\ \text{(or)} \\ \frac{3h}{8} \begin{bmatrix} (\text{first term} + \text{last term}) \\ +2(\text{suffices with a multiple of 3}) \\ +3(\text{remaining terms}) \end{cases}$$

Compute the value of $\int_{1}^{2} \frac{dx}{x}$ using Simpson's 3/8 rule

Solution: Let
$$y = f(x) = \frac{1}{x}$$
, $h = 1/3$

The tabulated values of y = f(x) are

	<i>x</i> ₀	x_{l}	x_2	<i>x</i> ₃
х	1	4/3	5/3	6/3 = 2
f(x)	$\frac{1}{1} = 1$	$\frac{1}{4/3} = 3/4 = .75$	$\frac{1}{5/3} = 0.6$	$\frac{1}{2} = 0.5$
	<i>y</i> 0	<i>y</i> 1	<i>y</i> ₂	<i>y</i> ₃

WKT, Simpson's 3/8 rule is

$$\int_{a}^{b} f(x) dx = \frac{3h}{8} [(y_0 + y_4) + 3(y_1 + y_2) + 2(y_3)]$$
i.e.,
$$\int_{1}^{2} \left(\frac{1}{x}\right) dx = \frac{3(1/3)}{8} [(1+0.5) + 3(0.75 + 0.6) + 2(0)]$$

$$= 0.69375$$

By actual integration,

$$\int_{1}^{2} \frac{1}{x} dx = (\log_{e} x)_{1}^{2} = (\ln 2 - \ln 1) = 0.69315$$

AD TECHNOLOGY

Single integrals by Trapezoidal, Simpson 1/3 & 3/8

Compute the value of $\int_{1}^{2} \frac{dx}{x}$ using

(a) Trapezoidal rule (b) Simpson's 1/3 rule (c) Simpson's 3/8 rule

Solution: Here h = 0.25,

$$y = f(x) = \frac{1}{x}$$

The tabulated values of y = f(x) are

	<i>x</i> ₀	x_{l}	x_2	<i>x</i> ₃	<i>x</i> ₄
x	1	1.25	1.50	1.75	2
f(x)	$\frac{1}{1} = 1$	$\frac{1}{1.25} = 0.8$	$\frac{1}{1.5} = 0.66667$	$\frac{1}{1.75} = 0.57143$	$\frac{1}{1.2} = 0.5$
	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄

(a) WKT, Trapezoidal rule is

$$\int_{a}^{b} f(x) dx = \int_{x_0}^{x_0 + nh} f(x) dx = \frac{h}{2} [(y_0 + y_4) + 2(y_1 + y_2 + y_3)]$$

$$\Rightarrow \int_{1}^{2} \left(\frac{1}{x}\right) dx = \frac{0.25}{2} [(1 + 0.5) + 2(0.8 + 0.66667 + 0.57143)]$$

$$= \frac{0.25}{2} [1.5 + 4.0762] = \frac{0.25}{2} [5.5762]$$
$$= 0.697025$$

(b) WKT, Simpson's 1/3 rule is

$$\int_{a}^{b} f(x) dx = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3) + 2(y_2)]$$

$$\Rightarrow \int_{1}^{2} \left(\frac{1}{x}\right) dx = \frac{0.25}{3} [(1 + 0.5) + 4(0.8 + 0.57143) + 2(0.66667)]$$

$$= 0.693255$$

(c) WKT, Simpson's 3/8 rule is

$$\int_{a}^{b} f(x) dx = \frac{3h}{8} [(y_0 + y_4) + 3(y_1 + y_2) + 2(y_3)]$$
i.e.,
$$\int_{1}^{2} \left(\frac{1}{x}\right) dx = \frac{3(0.25)}{8} [(1 + 0.5) + 3(0.8 + 0.66667) + 2(0.57143)]$$

$$= 0.66024$$

By actual integration,

$$\int_{1}^{2} \frac{1}{x} dx = (\log_{e} x)_{1}^{2} = (\ln 2 - \ln 1) = 0.69315$$

Evaluate $\int_{0}^{10} \frac{dx}{1+x}$ by dividing the range into 8 equal parts by (a) Trapezoidal

rule (b) Simpson's 1/3 rule (c) Simpson's 3/8 rule

Solution: Here
$$h = 1.25$$
, $y = f(x) = \frac{1}{1+x}$

(a) I = 2.51368, (b) I = 2.42200, (c) I = 2.41838, Actual integration,
$$\int_{0}^{10} \frac{dx}{1+x} = 2.39790$$
.

Example 4.31. Evaluate $\int_{0}^{1} x e^{x} dx$ taking 4 equal intervals by (a) Trapezoidal rule (b) Simpson's 1/3 rule (c) Simpson's 3/8 rule

Solution: (a) 1.02307, (b) 1.00017, (c) 0.87468, AI = 1

T

Example 4.32. Calculate $\int_{0}^{\infty} \sin^3 x dx$ taking 7 ordinates (6 intervals) using a) Trapezoidal rule

(b) Simpson's 1/3 rule (c) Simpson's 3/8 rule

Solution: (a)1.33467, (b)1.32612, (c)1.30516, AI = 1.3333.

Anna University Questions

1. The velocity v of a particle at a distance S from a point on its path is given by the table below:

Estimate the time taken to travel 60 meters by Simpson's 1/3rd rule and Simpson's 3/8th rule.

(AM10)

Solution:

$$[S(1/3): I = 1.06338, S(3/8): I = 1.06425]$$

2. Evaluate $I = \int_{0}^{6} \frac{1}{1+x} dx$ by using (i) direct integration (ii) Trapezoidal rule (iii) Simpson's one-third rule (iv) Simpson's three-eighth rule. (ND11)

Solution: [By Dir. Int. : I = 1.9459, Trap. : I = 2.022, S(1/3) : I = 1.9587, S(3/8) : I = 1.966]

3. Compute $\int_{0}^{\pi/2} \sin x dx$ using Simpson's 3/8 rule. (ND12)

Solution: $[S(3/8): I = .9999988 \approx 1]$

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

4. The velocities of a car running on a straight road at intervals of 2 minutes are given below:

Time(min): 0 2 4 6 8 10 12

Velocity(km/hr): 0 22 30 27 18 7 0

Using Simpson's $\frac{1}{3}$ -rd rule find the distance covered by the car. (ND13)

Solution: [By S(1/3) rule, the distance covered by the car : I = 3.55 km,]

- 5. Taking h = 0.05 evaluate $\int_{1}^{1.3} \sqrt{x} dx$ using Trapezoidal rule and Simpson's three-eighth rule. (AM14) **Solution:** [By Trap. : I = 0.32147, S(3/8) : I = 0.321485354]
- 6. The velocity v of a particle at a distance α from a point on its path is given by the table: (ND14)

s(ft) 0 10 20 30 40 50 60 v 47 58 64 65 61 52 38

Estimate the time taken to travel 60 feet by using Simpson's $\frac{3}{8}$ rule.

