
Rohini college of Engineering and technology 

16 
CS8392 Object Oriented Programming 

 

 

  

3.5 Creating Own Exceptions 

We can throw our own exceptions using throw keyword. 
Syntax: 

throw new Throwable_subclass; 

Eg: 

throw new ArithmeticException; 

Example Program1: 
import java.lang.Exception; 

class MyownException extends Exception 

{ 
MyownException(String mes) 

{ 
super(mes); 

} 

} 
class TestException 

{ 
public static void main(String args[]) 

{ 
int a=5,b=1000; 
try 

{ 
float c=(float)a/(float)b; 
if(c<0.01) 

{ 
throw new MyownException("number is too small"); 

} 
} 
catch (MyownException e) 

{ 
System.out.println("caught my exception"); 
System.out.println(e.getMessage()); 

} 
finally 

{ 
System.out.println("This is a finally block"); 

} 

} 

} 

Output: 
caught my exception 



Rohini college of Engineering and technology 

17 
CS8392 Object Oriented Programming 

 

 

number is too small 

This is a finally block 

Example Program2 

class MyownException2 extends Exception 

{ 
private int value; 
MyownException2(int x) 

{ 
value = x; 

} 
public String toString() 

{ 
return "MyownException2[" + value + "]"; 

} 
} 
class DemoException 

{ 

static void compute(int x) throws MyownException2 { 

System.out.println("Called compute(" + x + ")"); 
if(x>10) 

throw new MyownException2(x); 

System.out.println("Normal exit"); 

} 
public static void main(String args[]) 

{ 
try 

{ 
compute(1); 

compute(20); 

} 
catch (MyownException2 e) 

{ 
System.out.println("Caught " + e); 

} 

} 

} 

Output: 

Called compute(1) 
Normal exit 

Called compute(20) 

Caught MyException[20] 



Rohini college of Engineering and technology 

18 
CS8392 Object Oriented Programming 

 

 

3.6 Stack Trace Elements 
The StackTraceElement is a class that describes a single stack frame,which is 

an element of a stack trace when an exception occurs.The getStackTrace() method 
is used to return an array of StackTraceElements. Each stack frame contains the 

following 
1. the class name 

2. the method name 
3. The file name 

4. And the source-code line number 

StackTraceElement Constructor: 

StackTraceElement(String className,String methName,string fileName,int line) 

Parameters: 
className-The name of the class 

methName-The name of the method 
filename-The name of the file 

line-The line number is passed 

Method Description 

boolean 

equals(Object ob) 
Returns true if the invoking StackTraceElement is the 

same as the one passed in ob. Otherwise, it returns 
false. 

String getClassName( 

) 

Returns the name of the class in which the execution 

point described by the invoking StackTraceElement 
occurred. 

String getFileName( Returns the name of the file in which the source code  

) of the execution point described by the invoking 
StackT raceElement 

is stored. 

int getLineNumber( ) Returns the source-code line number at which the 
execution point described by the invoking 

StackTraceElement occurred. In some situations, the 
line number will not be available, in which case a 

negative value is returned. 

String 
getMethodName( ) 

Returns the name of the method in which the execution 
point described by the invoking StackTraceElement 

occurred. 

int hashCode( ) Returns the hash code for the invoking 

StackT raceElement. 

boolean 
isNativeMethod( ) 

Returns true if the execution point described by the 
invoking StackTraceElement occurred in a native 

method. Otherwise, it returns false. 



Rohini college of Engineering and technology 

19 
CS8392 Object Oriented Programming 

 

 

String toString( ) 

Returns the String equivalent of the invoking sequence. 

Table 3.3 Methods in StackTraceElement class 
Methods: 

1.1 oolean equals(ob): Returns try if the invoking StackTraceElement is as 

the one passed in ob. Otherwise it returns false. 

Example Program: 
import java.lang.*; 

import java.io.*; 
import java.util.*; 

public class StackTraceElementDemo 

{ 
public static void main(String[] arg) 

{ 
StackTraceElement st1=new 
StackTraceElement("foo","fuction1","StackTrace.java", 

1); 
StackTraceElement st2 = new StackTraceElement("bar", 

"function2","StackTrace.java", 1); 
Object ob = st1.getFileName(); 

// checking whether file names are same or not 

System.out.println(st2.getFileName().equals(ob)); 

} 

} 

Output: 
true 

2.5 tring getClassName(): Returns the class name of the execution point 

described by the invoking StackTraceElement. 

Example Program: 

import java.lang.*; 

import java.io.*; 
import java.util.*; 

public class StackTraceElementDemo1 

{ 
public static void main(String[] arg) 

{ 
System.out.println("Class name of each thread involved:"); 
for(int i = 0; i<2; i++) 

{ 

System.out.println(Thread.currentThread().getStackTrace()[i].getClassName ()); 

} 



Rohini college of Engineering and technology 

20 
CS8392 Object Oriented Programming 

 

 

} 

} 

Output: 
Class name of each thread involved: 

java.lang.Thread 

StackTraceElementDemo 

2.6 tring getFileName(): Returns the file name of the execution point described 

by the invoking StackTraceElement. 

Example Program: 

import java.lang.*; 
import java.io.*; 

import java.util.*; 

public class StackTraceElementDemo2 

{ 
public static void main(String[] arg) 

{ 
System.out.println("file name: "); 

for(int i = 0; i<2; i++) 

System.out.println(Thread.currentThread().getStackTrace()[i].getFileNam e()); 

} 
} 

Output: 
file name: 

Thread.java 

StackTraceElementDemo.java 

2.7 int getLineNumber(): Returns the source-code line number of the 
execution point described by the invoking StackTraceElement. In some situation 

the line number will not be available, in which case a negative value is returned. 

Example Program: 
import java.lang.*; 

import java.io.*; 
import java.util.*; 

public class StackTraceElementDemo3 

{ 
public static void main(String[] arg) 

{ 

System.out.println("line number: "); 
for(int i = 0; i<2; i++) 



Rohini college of Engineering and technology 

21 
CS8392 Object Oriented Programming 

 

 

System.out.println(Thread.currentThread().getStackTrace()[i].getLineNumbe r()); 

} 

} 

Output: 
line number: 

1589 

10 

2.8 String getMethodName(): Returns the method name of the execution 

point described by the invoking StackTraceElement. 

Example Program: 

import java.lang.*; 
import java.io.*; 

import java.util.*; 

public class StackTraceElementDemo4 

{ 
public static void main(String[] arg) 

{ 
System.out.println("method name: "); 
for(int i = 0; i<2; i++) 

System.out.println(Thread.currentThread().getStackTrace()[i].getMethodNa 

me()); 

} 

} 

Output: 
method name: 

getStackTrace 

main 

2.9 int hashCode(): Returns the hash code of the invoking 

StackTraceElement. 

Example Program: 

import java.lang.*; 
import java.io.*; 

import java.util.*; 

public class StackTraceElementDemo5 



Rohini college of Engineering and technology 

22 
CS8392 Object Oriented Programming 

 

 

{ 
public static void main(String[] arg) 

{ 
System.out.println("hash code: "); 
for(int i = 0; i<2; i++) 

System.out.println(Thread.currentThread().getStackTrace()[i].hashCode()) 

; 

} 

} 

Output: 

hash code: 
-1225537245 

-1314176653 

2.10 boolean isNativeMethod(): Returns true if the invoking 

StackTraceElement describes a native method. Otherwise returns false. 

Example Program: 
import java.lang.*; 

import java.io.*; 

import java.util.*; 

public class StackTraceElementDemo6 

{ 
public static void main(String[] arg) 

{ 

for(int i = 0; i<2; i++) 

System.out.println(Thread.currentThread().getStackTrace()[i].isNativeMetho d()); 

} 

} 

Output: 
false 

false 

8.5 tring toString(): Returns the String equivalent of the invoking sequence. 

Example Program: 

import java.lang.*; 
import java.io.*; 

import java.util.*; 

public class StackTraceElementDemo7 

{ 
public static void main(String[] arg) 



Rohini college of Engineering and technology 

23 
CS8392 Object Oriented Programming 

 

 

{ 
System.out.println("String equivlaent: "); 
for(int i = 0; i<2; i++) 

System.out.println(Thread.currentThread().getStackTrace()[i].toString()); 

} 

} 

Output: 
String equivlaent: 

java.lang.Thread.getStackTrace 

StackTraceElementDemo.main 

8.6 Input / Output Basics 

Java’s basic I/O system,including I/O is supported by io package. 

8.6.1 Streams 

Java implements streams within class hierarchies defined in the java.io package. 

Java programs perform input and output operations through streams.A stream is an 
abstraction that either produces or consumes information. A stream is linked to a 

physical device by the java I/O system.The input stream may abstract many 
different kinds of input: from a disk file,a keyboard,or a network socket. Likewise,an 

output stream may refer to the console such as a disk file, or a network connection. 

There are two types of streams 
1. Byte streams 

2. Character streams 

8.6.2 The Predefined Streams 

All Java programs automatically import java.lang package. This package defines a 
class called System, which contains several aspects of the run-time environment. 

System class contains three predefined stream variables: 
1. in 

2. out 
3. err 

System.in refers to the standard input stream. System.out refers to the standard 
output stream.System.err refers to the standard error stream.System.System.in is 

an object of type InputStream; System.out and System.err are objects of type 
PrintStream. These are byte streams, they are typically used to read and write 

characters from and to the console. 



Rohini college of Engineering and technology 

24 
CS8392 Object Oriented Programming 

 

 

8.7 Byte Streams 
Byte Streams provides a convenient way for handling input and output of 

bytes. When reading or writing binary data, byte streams are used. 
There are two abstract classes defined in byte streams 

1. InputStream 

2. OutputStream 

Each of these above classes has some subclasses that handle the various devices 

such as disk files,network connections, and memory buffers. 

3.8.1 Byte Stream Classes 

Stream Class Meaning 

BufferedInputStream Buffered input stream 

BufferedOutputStream Buffered output stream 

ByteArrayInputStream Input stream that reads from a byte array 

ByteArrayOutputStream Output stream that writes to a byte array 

DataInputStream An input stream that contains methods for reading  
 

the Java standard data types 

DataOutputStream An output stream that contains methods for writing 

the Java standard data types 

FileInputStream Input stream that reads from a file 

FileOutputStream Output stream that writes to a file 

FilterInputStream Implements InputStream 

FilterOutputStream Implements Outputstream 

InputStream Abstract class that describes stream input 

ObjectInputStream Input stream for objects 

ObjectOutputStream Output stream for objects 

OutputStream Abstract class that describes stream output 

PipedInputStream Input pipe 

PipedOutputStream Output pipe 

PrintStream 
Output stream that contains print( ) and println( ) 

PushbackInputStream Input stream that supports one-byte “unget,” which 

returns a byte to the input stream 

SequenceInputStream Input stream that is a combination of two or more 
input streams that will be read sequentially, one 

after the other 

Table 3.4 The Byte Stream I/O Classes in java.io  

The abstract classes InputStream and OutputStream define several methods that 

other stream classes implement.The methods read() and write() are used to read 
and write bytes of data. 

8.8 Character Stream Classes 



Rohini college of Engineering and technology 

25 
CS8392 Object Oriented Programming 

 

 

Character Streams provides a convenient way for handling input and output of 
characters. 

There are two abstract classes defined in byte streams 
1. Reader 

2. Writer 

These abstract classes handle Unicode character streams. 

3.9.1 Character Stream Classes 

Stream Class Meaning 

BufferedReader Buffered input character stream 

BufferedWriter Buffered output character stream 

CharArrayReader Input stream that reads from a character array 

CharArrayWriter Output stream that writes to a character array 

FileReader Input stream that reads from a file 

FileWriter Output stream that writes to a file 

FilterReader Filtered reader 

FilterWriter Filtered writer  

InputStreamReader Input stream that translates bytes to characters 

LineNumberReader Input stream that counts lines 

OutputStreamWriter Output stream that translates characters to bytes 

PipedReader Input pipe 

PipedWriter Output pipe 

Printwriter Output stream that contains print( ) and println( ) 

PushbackReader Input stream that allows characters to be returned to 
the input 

Stream 

Reader Abstract class that describes character stream input 

StringReader Input stream that reads from a string 

StringWriter Output stream that writes to a string 

Writer Abstract class that describes character stream output 

Table 3.5 T he Character Stream I/O Classes in java.io  

The abstract classes Reader and Writer define several methods that other 
stream classes implement.The methods read() and write() are used to read 

and write characters of data. 

8.9 0 Reading and Writing Console 

In Java, System.in is used to read console input. To obtain a character based 
stream , wrap System.in in a BufferedReader object. BufferedReader refers a 

buffered input stream. 

Constructor: 



Rohini college of Engineering and technology 

26 
CS8392 Object Oriented Programming 

 

 

BufferedReader(Reader inputReader) 

Here, inputReader is the stream that is linked to the instance of BufferedReader 
that is being created. Reader is an abstract class. One of its concrete subclasses is 

InputStreamReader, which converts bytes to characters. 

Constructor: 

InputStreamReader(InputStream inputStream) 

Because System.in refers to an object of InputStream, it can be used for 

inputStream. The following reads the input from the keyboard 

BufferedReader br = new BufferedReader(new 

InputStreamReader(System.in)); 

After this statement executes, br is a character-based stream that is linked to the 
console 

through System.in. 

8.9.1 1 Reading Characters 
To read a character from a BufferedReader,We can use read() method. 

Syntax: 

int read( ) throws IOException 

Whenever read() method is called, it reads a character from the input stream and 

returns an integer value.It returns -1 when the end of the stream is encountered. 

Example Program: import java.io.*; 

class ReadBR 

{ 
public static void main(String args[]) throws IOException 

{ 

char a; 
BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); 

System.out.println("Enter characters, 'q' to quit."); 
// read characters do { 

a = (char) br.read(); 
System.out.println(a); 

} while(a != 'q'); 

} 

} 

Output: 



Rohini college of Engineering and technology 

27 
CS8392 Object Oriented Programming 

 

 

Enter characters, 'q' to quit. 
123abcq 

1  
2  

3  a b c 
q 

3.10.2 Reading Strings 

To read a string from the keyboard,we can use readLine() method.readLine() is a 
member of the BufferedReader class. 

Syntax: 

String readLine( ) throws IOException 

It returns a String object. 

Example Program: 
import java.io.*; 

class BRReadLines 

{ 
public static void main(String args[]) throws IOException 

{ 
// create a BufferedReader using System.in 
BufferedReader br = new BufferedReader(new 

InputStreamReader(System.in)); 
String str; 

System.out.println("Enter lines of text."); 

System.out.println("Enter 'stop' to quit."); do { 
str = br.readLine(); 
System.out.println(str); 

} while(!str.equals("stop")); 

} 

} 

Output: 
Enter lines of text. 

Enter 'stop' to quit. 
This is line one. 

This is line two. 
Java makes working with strings easy. 

Just create String objects. 

stop 

3.10.3 Writing Console Output 
Console output is normally done with print() and println().These are the methods 



Rohini college of Engineering and technology 

28 
CS8392 Object Oriented Programming 

 

 

of PrintStream. System.out is a byte stream, which is useful for output the 
data.PrintStream is an output stream derived from OutputStream,Which contains 

write() method to write to the console. 
Syntax: 

void write(int byteval) 
This method is used to rite the byte specified in byteval. byteval is declared as an 

integer. 
Example Program: 

class WriteDemo 

{ 
public static void main(String args[]) 

{ 
int b; 
b = 'A'; 

System.out.write(b); 

System.out.write('\n'); 

} 

} 

Output: 

A 

3.10.4 The PrintWriter Class 

PrintWriter is one of the character-based classes. 
Constructor: 

PrintWriter(OutputStream outputStream, boolean flushOnNewline) 

ouputStream is an object of OutputStream class.flushOnNewline controls 

when Java flushes the output stream every time a println() method is 
called. If flushOnNewline is true, flushing automatically takes place. If false, 

flushing is not automatic. 

To write to the console by using a PrintWriter, specify System.out for the output 

stream and flush the stream after each newline. For example, this line of code 

creates a PrintWriter that is connected to console output: 

Example: 

PrintWriter pw = new PrintWriter(System.out, true); 

Example Program: 

import java.io.*; 

public class PrintWriterDemo 

{ 
public static void main(String args[]) 



Rohini college of Engineering and technology 

29 
CS8392 Object Oriented Programming 

 

 

{ 
PrintWriter pw = new PrintWriter(System.out, true); 
pw.println("This is a string"); 
int i = -7; 

pw.println(i); 
double d = 4.5e-7; 

pw.println(d); 

} } 

Output: 

This is a string 
-7 

4.5E-7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


