Rohini College of Engineering \& Technology

UNIT -II

DESIGN OF BEAMS

2.2 Design of Flanged beams

Problem 1.Find the flange width of the following simply supported T-beam. Effectivespan $=6 \mathrm{~m}, \mathrm{C} / \mathrm{C}$ distance of adjacent panels $=3.0 \mathrm{~m}$, Breadth of the web $=350 \mathrm{~mm}$, Thickness of slab $=100 \mathrm{~mm}$.

Solutions:
Given: $1=6 \mathrm{~m}$,

$$
\begin{aligned}
& \mathrm{bf}=300 \\
& \mathrm{Df}=100 \mathrm{~mm}
\end{aligned}
$$

Since the beam is simply supported, the distance between the points of zero
moments $10=1=6 \mathrm{~m}$
Clear span of the slab to the left or right of the beam
$=\mathrm{C} / \mathrm{C}$ distance of adjacent panels $-\mathrm{b}_{\mathrm{W}}$
$=3000-350=2650 \mathrm{~mm}$
Effective width of the flange is the least of the following:
i) $\quad b_{f}=10 / 6+b_{w}+6 D f$

$$
=6000+350+6 \times 100=1950 \mathrm{~mm}
$$

ii) $\quad \mathrm{bf}=\mathrm{b}_{\mathrm{w}}+$ Half of the clear distance to the adjacent beams on either side

$$
=350+2650 / 2+2650 / 2=3000 \mathrm{~mm}
$$

Therefore, $\mathrm{bf}=\mathbf{1 9 5 0} \mathrm{mm}$.

Problem 2.A T-beam of depth of $\mathbf{4 5 0} \mathbf{~ m m}$ has a flange width of 1000 mm and depth of 120 mm . It is reinforced with $\mathbf{6 - 2 0 \mathrm { mm } \phi}$ bars on tension side with a cover of $\mathbf{3 0} \mathbf{~ m m}$. If M20 concrete and Fe415 steel are used. Calculate MR of beam. Take $\mathbf{b w}_{\mathbf{w}}=\mathbf{3 0 0} \mathrm{mm}$.

Solution:
Given

$$
\begin{aligned}
& \mathrm{bw}=300 \mathrm{~mm}, \\
& \\
& \mathrm{bf}=1000 \mathrm{~mm}, \\
& \text { Df }=120 \mathrm{~mm}, \\
& \text { Clear Cover }=30 \mathrm{~mm}, \\
& \text { D }=450 \mathrm{~mm} \text { Effective cover }=30+20 / 2=40 \mathrm{~mm} \\
& d=450-40=410 \mathrm{~mm}
\end{aligned}
$$

$$
\mathrm{M} 20, \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

Fe415, $\mathrm{fy}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Assuming Actual Neutral Axis (xu) lies within the flange (i.e, $\mathrm{xu} \leq \mathrm{Df}$)

$$
\begin{aligned}
& \mathrm{Xu} / \mathrm{d}=(0.87 . \mathrm{fy} \text {.Ast }) /(0.36 . \mathrm{fck} . \mathrm{b} . \mathrm{d}) \\
& =0.87 \times 415 \times 1885 /(0.36 \times 1000 \times 20) \\
& =94.52 \mathrm{~mm}<\operatorname{Df}(120 \mathrm{~mm})
\end{aligned}
$$

Assumption is correct
The value of xu ,max /d from IS:456-2000 for Fe415

$$
0.48 . \mathrm{xu}, \max =0.48 \mathrm{~d}=0.48 \mathrm{x} 410=196.8 \mathrm{~mm}
$$

$\mathrm{xu}<\mathrm{xu}, \mathrm{max}$, section is under reinforced, calculate the moment of resistance by the following expression

$$
\begin{aligned}
\mathrm{Mu} & =0.87 . \text { fy. Ast.d. }[1-((\text { fy. Ast }) /(\text { fck.b.d }))] \\
& =0.87 \times 415 \times 1885 \times 410 \times(1-((1885 \times 415) /(1000 \times 410 \times 20))) \\
& =252.41 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
& \mathrm{Mu}=\mathbf{2 5 2 . 4 1 \times 1 0 ^ { 6 }} \mathrm{N}-\mathrm{mm} .
\end{aligned}
$$

Problem 3.Calculate the Ultimate moment of resistance of a tee-beam having the following section properties. Use M20 and Fe 415 HYSD bars. Width of flange = 1300 mm , Thickness of flange $=100 \mathrm{~mm}$, Width of rib $=325 \mathrm{~mm}$, Effective depth $=$ 600 mm , Area of steel $=4000 \mathrm{~mm}^{2}$

Solution:

Given: $\mathrm{b}_{\mathrm{w}}=325 \mathrm{~mm}$,

$$
\begin{aligned}
& \mathrm{bf}=1300 \mathrm{~mm} \\
& \mathrm{Df}=100 \mathrm{~mm} \\
& \mathrm{~d}=600 \mathrm{~mm} \\
& \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2}, \\
& \mathrm{fy}=415 \mathrm{~N} / \mathrm{mm}^{2}, \\
& \text { Ast }=4000 \mathrm{~mm} 2 .
\end{aligned}
$$

Assuming Actual Neutral Axis (xu) lies within the flange (i.e, $\mathrm{xu} \leq \mathrm{Df}$)

$$
\mathrm{Xu} / \mathrm{d}=(0.87 . \mathrm{fy} . \mathrm{Ast}) /(0.36 . \mathrm{fck} . \mathrm{b} . \mathrm{d})
$$

Rohini College of Engineering \& Technology

$$
\begin{aligned}
& =0.87 \times 415 \times 4000 /(0.36 \times 1300 \times 20) \\
& =154.3 \mathrm{~mm}>\operatorname{Df}(100 \mathrm{~mm})
\end{aligned}
$$

Assumption is wrong, neutral axis lies below the flange.

$$
\text { Df } / \mathrm{d}=100 / 600=0.166<0.2
$$

The value of xu by using relation $\mathrm{C} 1+\mathrm{C} 2=\mathrm{T}$

$$
\begin{aligned}
& \mathrm{C} 1=0.36 . \mathrm{fck} \cdot \mathrm{xu} \cdot \mathrm{bw}=0.36 \times 20 \times 325 \mathrm{xu}=2340 \mathrm{xu} \\
& \mathrm{C} 2=0.45 . \mathrm{fck} \cdot(\mathrm{bf}-\mathrm{bw}) \cdot \mathrm{Df} \\
& =0.45 \times 20 \times 100 \times(1300-325) \\
& =877500 \mathrm{NT}=0.87 . \mathrm{fy} \text {. Ast } \\
& =0.87 \times 415 \times 4000=1444200 \mathrm{~N} \\
& 2340 \mathrm{xu}+877500=1444200 \\
& \mathrm{xu}=242.18 \mathrm{~mm} \\
& \mathrm{xu}, \mathrm{max}=0.48 \mathrm{~d}=0.48 \times 600=
\end{aligned}
$$

$288 \mathrm{~mm} \mathrm{xu}<\mathrm{xu}$, max, section is under
reinforced.Df $/ \mathrm{xu}=100 / 242.18=0.413$
<0.43.
Hence use equation for Mu calculation

$$
\begin{aligned}
& \quad \mathrm{M}_{\mathrm{u}}=0.36 . \mathrm{f}_{\mathrm{ck}} \cdot \mathrm{~b}_{\mathrm{w}} \cdot \mathrm{~d}^{2} \cdot(\mathrm{xu} / \mathrm{d}) \cdot(1-0.42 .(\mathrm{xu} / \mathrm{d}))+0.45 \cdot \mathrm{fck} \cdot\left(\mathrm{bf}-\mathrm{b}_{\mathrm{W}}\right) \cdot \mathrm{Df} \cdot(\mathrm{~d}-(\mathrm{Df} / 2)) \\
& \mathrm{Mu}_{\mathrm{u}}=0.36 \times(242.18 / 600) \times(1-0.42 \times(242 \cdot 18 / 600)) \times 325 \times 600^{2} \times 20+ \\
& 0.45 \times 20 \times(1300-325) \times 100 \times(600-(100 / 2)) \\
& =282557218+482625000 \\
& =765.18 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
& =765.15 \mathrm{kN}-\mathrm{m} .
\end{aligned}
$$

