
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

EVALUATION OF EXPRESSION IN C
Evaluation of Infix expressions
Infix notation is commonly used in arithmetic formula or statements; the

operators are written in-between their operands.

Let’s assume the below

 Operands are real numbers.

 Permitted operators: +,-, *, /, ^(exponentiation)

 Blanks are permitted in expression.

 Parenthesis are permitted

Example:

A * (B + C) / D

2 * (5 + 3) / 4

Output: 4

Approach: Use Stacks

We will use two stacks

 Operand stack: This stack will be used to keep track of numbers.

 Operator stack: This stack will be used to keep operations (+, -, *, /, ^)

Order of precedence of operations–

1. ^ (Exponential)

2. / *

3. + –

Note: brackets () are used to override these rules.

Let’s define the Process: (will be used for the main algorithm)

1. Pop-out two values from the operand stack, let’s say it is A and B.

2. Pop-out operation from operator stack. let’s say it is ‘+’.

3. Do A + B and push the result to the operand stack.

Algorithm:

Iterate through given expression, one character at a time

1. If the character is an operand, push it to the operand stack.

https://algorithms.tutorialhorizon.com/stack-java-class-explained/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

2. If the character is an operator,

1. If the operator stack is empty then push it to the operator stack.

2. Else If the operator stack is not empty,

 If the character’s precedence is greater than or equal to the

precedence of the stack top of the operator stack, then push the

character to the operator stack.

 If the character’s precedence is less than the precedence of the stack

top of the operator stack then do Process (as explained above) until

character’s precedence is less or stack is not empty.

3. If the character is “(“, then push it onto the operator stack.

4. If the character is “)”, then do Process (as explained above) until the

corresponding “(” is encountered in operator stack. Now just pop out the

“(“.

Once the expression iteration is completed and the operator stack is not empty,

do Process until the operator stack is empty. The values left in the operand stack

is our final result.

Please see the walkthrough of an example below for more understanding.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Evaluation of Postfix Expressions
(Polish Postfix notation)
Postfix notation is a notation for writing arithmetic expressions in which the

operands appear before their operators. There are no precedence rules to learn,

and parentheses are never needed. Because of this simplicity.

Let’s assume the below

 Operands are real numbers in single digits. (Read: Evaluation of Postfix

Expressions for any Number)

 Permitted operators: +,-, *, /, ^(exponentiation)

 Blanks are NOT permitted in expression.

 Parenthesis are permitted

Example:

Postfix: 54+

Output: 9

Explanation: Infix expression of above postfix is: 5+ 4 which resolves to 9

Postfix: 2536+**5/2-

Output: 16

Explanation: Infix expression of above postfix is: 2 * (5 *(3+6))/5-2 which
resolves to 16

Approach: Use Stack

Algorithm:

Iterate through given expression, one character at a time

1. If the character is an operand, push it to the operand stack.

2. If the character is an operator,

1. pop an operand from the stack, say it’s s1.

2. pop an operand from the stack, say it’s s2.

3. perform (s2 operator s1) and push it to stack.

https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-2/
https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-2/
https://algorithms.tutorialhorizon.com/stack-java-class-explained/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

3. Once the expression iteration is completed, The stack will have the final

result. Pop from the stack and return the result.

Please see the walkthrough of an example below for more understanding.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Evaluation of Postfix Expressions
(Polish Postfix notation)

Earlier we had discussed how to evaluate postfix expressions where operands are

of single-digit. In this article, we will discuss how to evaluate postfix expressions

for any number (not necessarily single digit.)

Postfix notation is a notation for writing arithmetic expressions in which the

operands appear before their operators.

Let’s assume the below

 Operands are real numbers (could be multiple digits).

 Permitted operators: +,-, *, /, ^(exponentiation)

 Blanks are used as a separator in expression.

 Parenthesis are permitted

Example:

Postfix: 500 40+

Output: 540

Explanation: Infix expression of above postfix is: 500 + 40 which resolves to
540

Postfix: 20 50 3 6 + * * 300 / 2 -

Output: 28

Explanation: Infix expression of above postfix is: 20 * (50 *(3+6))/300-2
which resolves to 28

Approach: Use Stack

Algorithm:

Iterate through given expression, one character at a time

1. If the character is a digit, initialize number = 0

 while the next character is digit

https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-1/
https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-1/
https://algorithms.tutorialhorizon.com/stack-java-class-explained/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

1. do number = number*10 + currentDigit

 push number to the stack.

2. If the character is an operator,

 pop operand from the stack, say it’s s1.

 pop operand from the stack, say it’s s2.

 perform (s2 operator s1) and push it to stack.

3. Once the expression iteration is completed, The stack will have the final

result. pop from the stack and return the result.

Please see the walkthrough of an example below for more understanding.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Evaluation of Prefix Expressions
(Polish Notation)
Earlier we had discussed how to evaluate prefix expression where operands are of

single-digit. Here we will discuss how to evaluate prefix expression for any

number (not necessarily single digit.)

https://algorithms.tutorialhorizon.com/evaluation-of-prefix-expressions-polish-notation-set-1/
https://algorithms.tutorialhorizon.com/evaluation-of-prefix-expressions-polish-notation-set-1/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Prefix notation is a notation for writing arithmetic expressions in which the

operands appear after their operators. Let’s assume the below

 Operands are real numbers (could be multiple digits).

 Permitted operators: +,-, *, /, ^(exponentiation)

 Blanks are used as a separator in expression.

 Parenthesis are permitted

Example:

Postfix: + 500 40

Output: 540

Explanation: Infix expression of the above prefix is: 500 + 40 which resolves
to 540

Postfix: - / * 20 * 50 + 3 6 300 2

Output: 28

Explanation: Infix expression of above prefix is: 20 * (50 *(3+6))/300-2 which
resolves to 28

Approach: Use Stack

Algorithm:

Reverse the given expression and Iterate through it, one character at a time

1. If the character is a digit, initialize String temp;

 while the next character is not a digit

 do temp = temp + currentDigit

 convert Reverse temp into Number.

 push Number to the stack.

2. If the character is an operator,

 pop the operand from the stack, say it’s s1.

 pop the operand from the stack, say it’s s2.

 perform (s1 operator s2) and push it to stack.

3. Once the expression iteration is completed, The stack will have the final

result. Pop from the stack and return the result.

Please see the walkthrough of an example below for more understanding.

https://algorithms.tutorialhorizon.com/stack-java-class-explained/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

	EVALUATION OF EXPRESSION IN C
	Evaluation of Infix expressions
	Evaluation of Postfix Expressions (Polish Postfix notation)
	Postfix notation is a notation for writing arithmetic expressions in which the operands appear before their operators. There are no precedence rules to learn, and parentheses are never needed. Because of this simplicity.
	Evaluation of Postfix Expressions (Polish Postfix notation) (1)
	Evaluation of Prefix Expressions (Polish Notation)

