PROPERTIES OF EIGEN VALUES AND EIGEN VECTORS

Property: 1(a) The sum of the Eigen values of a matrix is equal to the sum of the elements of the principal (main) diagonal.
(or)
The sum of the Eigen values of a matrix is equal to the trace of the matrix.

1. (b) product of the Eigen values is equal to the determinant of the matrix.

Proof:

Let A be a square matrix of order n.
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{equation*}
\text { (i.e.) } \lambda^{n}-S_{1} \lambda^{n-1}+S_{2} \lambda^{n-2}-\cdots+(-1) S_{n}=0 \tag{1}
\end{equation*}
$$

where $\quad S_{1}=$ Sum of the diagonal elements of A.

$$
\mathrm{S}_{\mathrm{n}}=\text { determinant of } \mathrm{A} .
$$

We know the roots of the characteristic equation are called Eigen values of the given matrix.
Solving (1) we get n roots.
Let the n be $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$.
i.e., $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$. are the Eignvalues of A.

We know already,
$\lambda^{n}-$ (Sum of the roots $\lambda^{n-1}+[$ sum of the product of the roots taken two at a
time] $\lambda^{\mathrm{n}-2}-$

$$
\begin{equation*}
\text { (0) } 25372450 \tag{2}
\end{equation*}
$$

Sum of the roots $=S_{1} b y(1) \&(2)$

$$
\begin{aligned}
& \text { (i.e.) } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=S_{1} \\
& \text { (i.e.) } \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=a_{11}+a_{22}+\cdots+a_{n n}
\end{aligned}
$$

$$
\text { Sum of the Eigen values }=\text { Sum of the main diagonal elements }
$$

Product of the roots $=S_{n}$ by (1) \& (2)

$$
\text { (i.e.) } \lambda_{1} \lambda_{2} \ldots \lambda_{n}=\operatorname{det} \text { of } A
$$

$$
\text { Product of the Eigen values }=|\mathrm{A}|
$$

Property: $\mathbf{2}$ A square matrix A and its transpose A^{T} have the same Eigenvalues.

A square matrix A and its transpose A^{T} have the same characteristic values.

Proof:

Let A be a square matrix of order n.
The characteristic equation of A and A^{T} are

$$
\begin{equation*}
|A-\lambda I|=0 \tag{1}
\end{equation*}
$$

and $\quad\left|A^{T}-\lambda I\right|=0$
Since, the determinant value is unaltered by the interchange of rows and columns.
We know $|\mathrm{A}|=\left|\mathrm{A}^{\mathrm{T}}\right|$
Hence, (1) and (2) are identical.
\therefore The Eigenvalues of A and A^{T} are the same.
Property: 3 The characteristic roots of a triangular matrix are just the diagonal elements of the matrix.

> (or)

The Eigen values of a triangular matrix are just the diagonal elements of the matrix.

On expansion it gives $\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)\left(a_{33}-\lambda\right)=0$

$$
\text { i.e., } \lambda=a_{11}, a_{22}, a_{33}
$$

which are diagonal elements of the matrix A .
Property: 4 If λ is an Eigenvalue of a matrix A, then $\frac{1}{\lambda},(\lambda \neq 0)$ is the Eignvalue of $A^{\mathbf{- 1}}$. (or)
If $\boldsymbol{\lambda}$ is an Eigenvalue of a matrix A, what can you say about the Eigenvalue of matrix $A^{\mathbf{- 1}}$.
Prove your statement.
Proof:

If X be the Eigenvector corresponding to λ,

$$
\begin{equation*}
\text { then } A X=\lambda X \tag{i}
\end{equation*}
$$

Pre multiplying both sides by A^{-1}, we get

$$
\begin{array}{r}
A^{-1} A X=A^{-1} \lambda X \\
\text { (1) } \Rightarrow X=\lambda A^{-1} X \\
X=\lambda A^{-1} X \\
\div \lambda \Rightarrow \quad \frac{1}{\lambda} X=A^{-1} X \\
\text { (i.e.) } \quad A^{-1} X=\frac{1}{\lambda} X
\end{array}
$$

This being of the same form as (i), shows that $\frac{1}{\lambda}$ is an Eigenvalue of the inverse matrix A^{-1}.
Property: 5 If λ is an Eigenvalue of an orthogonal matrix, then $\frac{1}{\lambda}$ is an Eigenvalue.
Proof:
Definition: Orthogonal matrix.
A square matrix A is said to be orthogonal if $A A^{T}=A^{T} A=I$

$$
\text { i.e., } A^{T}=A^{-1}
$$

Let A be an orthogonal matrix.
Given λ is an Eignevalue of A.

$$
\Rightarrow \frac{1}{\lambda} \text { is an Eigenvalue of } \mathrm{A}^{-1}
$$

Since, $A^{T}=A^{-1}$
$\therefore \frac{1}{\lambda}$ is an Eigenvalue of A^{T}
But, the matrices A and A^{T} have the same Eigenvalues, since the determinants
$|A-\lambda I|$ and $\left|A^{T}-\lambda I\right|$ are the same.
Hence, $\frac{1}{\lambda}$ is also an Eigenvalue of A.
Property: 6 If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$. are the Eignvalues of a matrix A, then A^{m} has the Eigenvalues $\lambda_{1}^{m}, \lambda_{2}^{m}, \ldots, \lambda_{n}^{m}$ (m being a positive integer)

Proof:

Let A_{i} be the Eigenvalue of A and X_{i} the corresponding Eigenvector.
Then $A X_{i}=\lambda_{i} X_{i}$

We have $A^{2} X_{i}=A\left(A X_{i}\right)$

$$
\begin{aligned}
& =\mathrm{A}\left(\lambda_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right) \\
& =\lambda_{\mathrm{i}} \mathrm{~A}\left(\mathrm{X}_{\mathrm{i}}\right) \\
& =\lambda_{\mathrm{i}}\left(\lambda_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right) \\
& =\lambda_{\mathrm{i}}^{2} \mathrm{X}_{\mathrm{i}}
\end{aligned}
$$

|I| $1 y^{3} \mathrm{~A}^{3} \mathrm{X}_{\mathrm{i}}=\lambda_{\mathrm{i}}^{3} \mathrm{X}_{\mathrm{i}}$
In general, $A^{m} X_{i}=\lambda_{i}^{m} X_{i}$
Hence, λ_{i}^{m} is an Eigenvalue of A^{m}.
The corresponding Eigenvector is the same X_{i}.
Note: If λ is the Eigenvalue of the matrix A then λ^{2} is the Eigenvalue of A^{2}

Property: 7 The Eigen values of a real symmetric matrix are real numbers.

Proof:

Let λ be an Eigenvalue (may be complex) of the real symmetric matrix A. Let the corresponding Eigenvector be X . Let A denote the transpose of A .

We have $A X=\lambda X$
Pre-multiplying this equation by $1 \times n$ matrix \bar{X}^{\prime}, where the bar denoted that all elements of \bar{X}^{\prime} are the complex conjugate of those of X^{\prime}, we get

$$
\begin{equation*}
\overline{\mathrm{X}^{\prime}} \mathrm{AX}=\lambda \overline{\mathrm{X}^{\prime}} \mathrm{X} \tag{1}
\end{equation*}
$$

Taking the conjugate complex of this we get $X^{\prime} A \bar{X}=\bar{\lambda} X^{\prime} \bar{X}$ or

$$
X^{\prime} A \bar{X}=\bar{\lambda} X^{\prime} \bar{X} \text { since, } \bar{A}=A \text { for } A \text { is real. }
$$

Taking the transpose on both sides, we get

$$
\left(X^{\prime} A \bar{X}\right)^{\prime}=\left(\bar{\lambda} X^{\prime} \bar{X}\right)^{\prime}(\text { i.e. },) \overline{X^{\prime}} A^{\prime} X=\bar{\lambda} \overline{X^{\prime}} X
$$

$$
\text { (i.e.) } \overline{\mathrm{X}^{\prime}} \mathrm{A}^{\prime} \mathrm{X}=\bar{\lambda} \overline{\mathrm{X}^{\prime}} X \text { since } \mathrm{A}^{\prime}=\mathrm{A} \text { for } \mathrm{A} \text { is symmetric. }
$$

But, from (1), $\overline{\mathrm{X}^{\prime}} \mathrm{AX}=\lambda \overline{\mathrm{X}^{\prime}} X$ Hence $\lambda \overline{\mathrm{X}^{\prime}} X=\bar{\lambda} \overline{\mathrm{X}^{\prime}} X$
Since, $\overline{\mathrm{X}^{\prime}} \mathrm{X}$ is an 1×1 matrix whose only element is a positive value, $\lambda=\bar{\lambda}$ (i.e.) λ is real).

Property: 8 The Eigen vectors corresponding to distinct Eigen values of a real symmetric matrix are orthogonal.

Proof:
For a real symmetric matrix A, the Eigen values are real.

Let X_{1}, X_{2} be Eigenvectors corresponding to two distinct eigen values $\lambda_{1}, \lambda_{2}\left[\lambda_{1}, \lambda_{2}\right.$ are real]

$$
\begin{align*}
& \mathrm{AX} \mathrm{X}_{1}=\lambda_{1} \mathrm{X}_{1} \tag{1}\\
& \mathrm{AX}_{2}=\lambda_{2} \mathrm{X}_{2} \tag{2}
\end{align*}
$$

Pre multiplying (1) by $\mathrm{X}_{2}{ }^{\prime}$, we get

$$
\begin{aligned}
\mathrm{X}_{2}{ }^{\prime} \mathrm{AX}_{1} & =\mathrm{X}_{2}{ }^{\prime} \lambda_{1} \mathrm{X}_{1} \\
& =\lambda_{1} \mathrm{X}_{2}{ }^{\prime} \mathrm{X}_{1}
\end{aligned}
$$

Pre-multiplying (2) by $\mathrm{X}_{1}{ }^{\prime}$, we get

$$
\begin{equation*}
\mathrm{X}_{1}^{\prime} \mathrm{AX}_{2}=\lambda_{2} \mathrm{X}_{1}^{\prime} \mathrm{X}_{2} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\operatorname{But}\left(\mathrm{X}_{2}{ }^{\prime} \mathrm{AX}_{1}\right)^{\prime} & =\left(\lambda_{1} \mathrm{X}_{2}{ }^{\prime} \mathrm{X}_{1}\right)^{\prime} \\
\mathrm{X}_{1}{ }^{\prime} \mathrm{A} \mathrm{X}_{2} & =\lambda_{1} \mathrm{X}_{1} \mathrm{X}_{2} \\
\text { (i.e) } \quad \mathrm{X}_{1}{ }^{\prime} \mathrm{AX}_{2} & =\lambda_{1} \mathrm{X}_{1}{ }^{\prime} \mathrm{X}_{2}
\end{aligned}
$$

$$
\text { (4) }\left[\because A^{\prime}=A\right]
$$

From (3) and (4)

$$
\begin{aligned}
& \quad \lambda_{1} \mathrm{X}_{1}^{\prime} \mathrm{X}_{2}=\lambda_{2} \mathrm{X}_{1}{ }^{\prime} \mathrm{X}_{2} \\
& \text { (i.e.,) }\left(\lambda_{1}-\lambda_{2}\right) \mathrm{X}_{1}^{\prime} \mathrm{X}_{2}=0 \\
& \lambda_{1} \neq \lambda_{2}, \mathrm{X}_{1}^{\prime} \mathrm{X}_{2}=0 \\
& \therefore \mathrm{X}_{1}, \mathrm{X}_{2} \text { are orthogonal. }
\end{aligned}
$$

Property: 9 The similar matrices have same Eigen values.

Proof:

Let A, B be two similar matrices.
Then, there exists an non-singular matrix P such that $B=P^{-1} A P$
$B-\lambda I=P^{-1} A P-\lambda I$
$=\mathrm{P}^{-1} \mathrm{AP}-\mathrm{P}^{-1} \lambda \mathrm{IP}$

$|\mathrm{B}-\lambda \mathrm{I}|=\left|\mathrm{P}^{-1}\right||\mathrm{A}-\lambda \mathrm{I}||\mathrm{P}|$
$=|\mathrm{A}-\lambda \mathrm{I}|\left|\mathrm{P}^{-1} \mathrm{P}\right|$
$=|A-\lambda I||I|$
$=|A-\lambda I|$
Therefore, A, B have the same characteristic polynomial and hence characteristic roots.
\therefore They have same Eigen values.

Property: 10 If a real symmetric matrix of order 2 has equal Eigen values, then the matrix is a scalar matrix.

Proof :

Rule 1 : A real symmetric matrix of order n can always be diagonalised.
Rule 2 : If any diagonalized matrix with their diagonal elements are equal, then the matrix is a scalar matrix.

Given A real symmetric matrix 'A' of order 2 has equal Eigen values.
By Rule: 1 A can always be diagonalized, let λ_{1} and λ_{2} be their Eigenvalues then we get the diagonlized matrix $=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$

$$
\text { Given } \lambda_{1}=\lambda_{2}
$$

$$
\text { Therefore, we get }=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

By Rule: 2 The given matrix is a scalar matrix.

Property: 11 The Eigen vector X of a matrix A is not unique.

Proof :

Let λ be the Eigenvalue of A, then the corresponding Eigenvector X such that $\mathrm{AX}=\lambda \mathrm{X}$.
Multiply both sides by non-zero K,

$$
\begin{aligned}
\mathrm{K}(\mathrm{AX}) & =\mathrm{K}(\lambda \mathrm{X}) \\
\Rightarrow \mathrm{A}(\mathrm{KX}) & =\lambda(\mathrm{KX})
\end{aligned}
$$

(i.e.) an Eigenvector is determined by a multiplicative scalar.
(i.e.) Eigenvector is not unique.

Property: $12 \lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be distinct Eigenvalues of an $n \times n$ matrix, then the corresponding Eigenvectors $X_{1}, X_{2}, \ldots X_{n}$ form a linearly independent set.

Proof:

Let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{m}(m \leq n)$ be the distinct Eigen values of a square matrix A of order n.
Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}}$ be their corresponding Eigenvectors we have to prove $\sum_{i=1}^{m} \alpha_{i} \mathrm{X}_{\mathrm{i}}=$ 0 implies each $\alpha_{i}=0, i=1,2, \ldots, m$

Multiplying $\sum_{i=1}^{m} \alpha_{i} \mathrm{X}_{\mathrm{i}}=0$ by $\left(\mathrm{A}-\lambda_{1} \mathrm{I}\right)$, we get

$$
\left(\mathrm{A}-\lambda_{1} \mathrm{I}\right) \alpha_{1} \mathrm{X}_{1}=\alpha_{1}\left(A \mathrm{X}_{1}-\lambda_{1} \mathrm{X}_{1}\right)=\alpha_{1}(0)=0
$$

When $\sum_{i=1}^{m} \alpha_{i} \mathrm{X}_{\mathrm{i}}=0$ Multiplied by

$$
\left(\mathrm{A}-\lambda_{2} \mathrm{I}\right)\left(\mathrm{A}-\lambda_{2} \mathrm{I}\right) \ldots\left(\mathrm{A}-\lambda_{i-1} \mathrm{I}\right)\left(\mathrm{A}-\lambda_{i} \mathrm{I}\right)\left(\mathrm{A}-\lambda_{i+1} \mathrm{I}\right) \ldots\left(\mathrm{A}-\lambda_{m} \mathrm{I}\right)
$$

We get, $\alpha_{i}\left(\lambda_{i}-\lambda_{1}\right)\left(\lambda_{i}-\lambda_{2}\right) \ldots\left(\lambda_{i}-\lambda_{i-1}\right)\left(\lambda_{i}-\lambda_{i+1}\right) \ldots\left(\lambda_{i}-\lambda_{m}\right)=0$

Since, λ 's are distinct, $\alpha_{i}=0$
Since, i is arbitrary, each $\alpha_{i}=0, i=1,2, \ldots, m$
$\sum_{i=1}^{m} \alpha_{i} \mathrm{X}_{\mathrm{i}}=0$ implies each $\alpha_{i}=0, i=1,2, \ldots, m$
Hence, $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}}$ are linearly independent.
Property: 13 If two or more Eigen values are equal it may or may not be possible to get linearly
independent Eigenvectors corresponding to the equal roots.
Property: 14 Two Eigenvectors X_{1} and X_{2} are called orthogonal vectors if $X_{1}^{T} X_{2}=0$
Property: 15 If A and B are $n \times n$ matrices and B is a non singular matrix, then A and
$B^{-1} A B$ have same eigenvalues.

Proof:

Characteristic polynomial of $B^{-1} \mathrm{AB}$

$$
\begin{aligned}
& =\left|\mathrm{B}^{-1} \mathrm{AB}-\lambda \mathrm{I}\right|=\left|\mathrm{B}^{-1} \mathrm{AB}-\mathrm{B}^{-1}(\lambda \mathrm{I}) \mathrm{B}\right| \\
& =\left|\mathrm{B}^{-1}(\mathrm{~A}-\lambda \mathrm{I}) \mathrm{B}\right|=\left|\mathrm{B}^{-1}\right||\mathrm{A}-\lambda \mathrm{I}||\mathrm{B}| \\
& =\left|\mathrm{B}^{-1}\right||\mathrm{B}||\mathrm{A}-\lambda \mathrm{I}|=\left|\mathrm{B}^{-1} \mathrm{~B}\right||\mathrm{A}-\lambda I| \\
& =\text { Characterisstisc polynomial of } \mathrm{A}
\end{aligned}
$$

Hence, A and $\mathrm{B}^{-1} \mathrm{AB}$ have same Eigenvalues.
Example: Find the sum and product of the Eigen values of the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$

Solution:

Sum of the Eigen values $=$ Sum of the main diagonal elements

$$
\begin{aligned}
& =(-2)+(1)+(0) \\
& \text { Product of the Eigen values }=\left|\begin{array}{cc}
-2 & 2 \\
2 & -3 \\
-1 & -2
\end{array}\right| \\
& =-2(0-12)-2(0-6)-3(-4+1) \\
& =24+12+9=45
\end{aligned}
$$

Example: Find the sum and product of the Eigen values of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$
Solution:

Sum of the Eigen values $=$ Sum of its diagonal elements $=1+2+1=4$

$$
\begin{aligned}
& \text { Product of Eigen values }=|C|=\left|\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right| \\
& \qquad \begin{aligned}
= & 1(2-1)-2(-1-1)+3(-1-2) \\
& =1(1)-2(-2)+3(-3) \\
& =1+4-9=-4
\end{aligned}
\end{aligned}
$$

Example: The product of two Eigen values of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is 16. Find the third Eigenvalue.

Solution:

Let Eigen values of the matrix A be $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
Given $\lambda_{1} \lambda_{2}=16$
We know that, $\lambda_{1} \lambda_{2} \lambda_{3}=|\mathrm{A}|$
[Product of the Eigen values is equal to the determinant of the matrix]

$$
\begin{aligned}
& \therefore \lambda_{1} \lambda_{2} \lambda_{3}=\left|\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right| \\
& \quad=6(9-1)+(-6+2)+2(2-6) \\
& \\
& =6(8)+2(-4)+2(-4) \\
& \quad=48-8-8 \\
& \Rightarrow \lambda_{1} \lambda_{2} \lambda_{3}=32 \\
& \Rightarrow 16 \lambda_{3}=32
\end{aligned}
$$

$$
\Rightarrow \lambda_{3}=\frac{32}{16}=2
$$

Example: Two of the Eigen values of $\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ are 2 and 8. Find the third Eigen
value.

Solution:

We know that, Sum of the Eigen values $=$ Sum of its diagonal elements

$$
=6+3+3=12
$$

Given $\lambda_{1}=2, \lambda_{2}=8, \lambda_{3}=?$

We get, $\lambda_{1}+\lambda_{2}+\lambda_{3}=12$

$$
\begin{aligned}
2+8+\lambda_{3} & =12 \\
\lambda_{3} & =12-10 \\
\lambda_{3} & =2
\end{aligned}
$$

\therefore The third Eigenvalue $=2$
Example: If 3 and 15 are the two Eigen values of $A=\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ find $|A|$, without expanding the determinant.

Solution:

Given $\lambda_{1}=3, \lambda_{2}=15, \lambda_{3}=$?
We know that, Sum of the Eigen values $=$ Sum of the main diagonal elements

$$
\begin{gathered}
\Rightarrow \lambda_{1}+\lambda_{2}+\lambda_{3}=8+7+3 \\
3+15+\lambda_{3}=18 \\
\Rightarrow \lambda_{3}=0
\end{gathered}
$$

We know that, Product of the Eigen values $=|\mathrm{A}|$

$$
\begin{aligned}
& \Rightarrow(3)(15)(0)=|\mathrm{A}| \\
& \Rightarrow|\mathrm{A}|=(3)(15)(0) \\
& \Rightarrow|\mathrm{A}|=0
\end{aligned}
$$

Example: If 2, 2, 3 are the Eigen values of $A=\left[\begin{array}{rrr}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$ find the Eigen values of A^{T}.

Solution:

By Property "A square matrix A and its transpose A^{T} have the same Eigen values".
Hence, Eigen values of A^{T} are 2, 2, 3
Example: If the Eigen values of the matrix $A=\left[\begin{array}{rr}1 & 1 \\ 3 & -1\end{array}\right]$ are 2,-2 then find the Eigen values of A^{T}.

Solution:

Eigen values of $A=$ Eigen values of A^{T}
\therefore Eigen values of A^{T} are 2, -2 .

Example: Two of the Eigen values of $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ are 3 and 6. Find the Eigen values of $\mathrm{A}^{\mathbf{- 1}}$.

Solution:

Sum of the Eigen values $=$ Sum of the main diagonal elements

$$
=3+5+3=11
$$

Let K be the third Eigen value

$$
\begin{aligned}
& \therefore 3+6+k=11 \\
& \Rightarrow 9+k=11 \\
& \Rightarrow k=2
\end{aligned}
$$

\therefore The Eigenvalues of A^{-1} are $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$
Example: Two Eigen values of the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ are equal to 1 each. Find the Eigenvalues of $\mathbf{A}^{\mathbf{- 1}}$.

Solution:

$$
\text { Given } A=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

Let the Eigen values of the matrix A be $\lambda_{1}, \lambda_{2}, \lambda_{3}$
Given condition is $\lambda_{2}=\lambda_{3}=1$
We have, Sum of the Eigen values $=$ Sum of the main diagonal elements

$$
\begin{aligned}
& \Rightarrow \lambda_{1}+\lambda_{2}+\lambda_{3}=2+3+2 \\
& \Rightarrow \lambda_{1}+1+1=7 \\
& \Rightarrow \lambda_{1}+2=7 \\
& \Rightarrow \lambda_{1}=5
\end{aligned}
$$

Hence, the Eigen values of A are 1, 1, 5
Eigen values of A^{-1} are $\frac{1}{1}, \frac{1}{1}, \frac{1}{5}$, i.e., $1,1, \frac{1}{5}$

