ROHINI college of engineering \& technology
Near Anjugramam Junction, Kanyakumari Main Road, Palkulam, Variyoor P.O-629401 Kanyakumari Dist, Tamilnadu., E-mail : admin@rcet.org.in, Website : www.rcet.org.in

DEPARTMENT OF MATHEMATICS

NAME OF THE SUBJECT : STATISTICS \& NUMERICAL METHODS

SUBJECT CODE
: MA8452
REGULATION
: 2017

UNIT - II : DESIGN OF EXPERIMENTS

UNIT -II - DESIGN OF EXPERIMENTS

NOTES

Analysis of Variance :

Analysis of Variance is a statistical method used to test the difference between 2 or more means. In short it is ANOVA
Uses of ANOVA:

- To test the homogeneity of several mean
- It is now frequently used intesting the linearity of the fitted regression line or in the significance of the correlation ratio

Assumptions of ANOVA

- The sample observations are independent
- The environmental effects are additive in nature
- Sample observation are coming from normal distribution/population

Experimental error:

Factors beyond the control of the experiment are known as experimental error

Aim of the design of experiment:

Aim is to control the extraneous variables so that the result could be attributed only to the experimental variables
Basic principles of design of experiments:

- Randomization
- Replication
- Local Control

Three essential steps to plan Design of experiment:
To plan an experiment the following three are essential

- A Statement of the objective. Statement should clearly mention the hypothesis to be tested
- A description of the experiment. Description should include the type of experimental material, size of the experiment and the number of replications.
- The outline of the method of analysis. The outline of the method consists of analysis of variance

Completely randomized design:

In Completely randomized design the treatments are given to the experimental units by a procedure of random allocation. It is used when the units are homogeneous.

ANOVA table for One Way classification (CRD)

Source of Variation	Sum of Squares	Degrees of freedom	Mean Square	F- Ratio
Between Samples	SSC	K-1	MSC $=\frac{\mathrm{SSC}}{\mathrm{K}-1}$	$\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$
Within Samples	SSE	$\mathrm{N}-\mathrm{K}$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{N}-\mathrm{K}}$	

Two-way classification or Randomized Block Design (RBD)
When data are classified according to two factors one classification is taken column wise and the other row wise. Such a classification is called two-way classification

Source of Variation	Sum of Squares	Degrees of freedom	Mean Square	F- Ratio
Column Treatment	SSC	$\mathrm{c}-1$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{c}-1}$	$\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$
Row Treatments	SSR	$\mathrm{r}-1$	$\mathrm{MSC}=\frac{\mathrm{SSR}}{\mathrm{r}-1}$	$\mathrm{~F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}}$
Error (or) Residual	SSE	$(\mathrm{r}-1)(\mathrm{c}-1)$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{(\mathrm{r}-1)(\mathrm{c}-1)}$	

ANOVA table for Latin Square Design

Source of Variation	Sum of Squares	Degrees of freedom	Mean Square	F- Ratio
Column Treatments	SSC	$\mathrm{n}-1$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{n}-1}$	$\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$
Row Treatments	SSR	$\mathrm{n}-1$	$\mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{n}-1}$	$\mathrm{~F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}}$
Between Treatments	SST	$\mathrm{n}-1$	$\mathrm{MSK}=\frac{\mathrm{SST}}{\mathrm{n}-1}$	$\mathrm{~F}_{\mathrm{K}}=\frac{\mathrm{MSK}}{\mathrm{MSE}}$
Error (or) Residual	SSE	$(\mathrm{n}-1)(\mathrm{n}-2)$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{(\mathrm{n}-1)(\mathrm{n}-2)}$	

ANOVA table for $\mathbf{2}^{\mathbf{2}}$ factorial design

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio
A	SS_{A}	1	$\mathrm{MS}_{\mathrm{A}}=\frac{\mathrm{SS}_{\mathrm{A}}}{\text { d.f }}$	$\mathrm{F}_{\mathrm{A}}=\frac{\mathrm{MS}_{\mathrm{A}}}{\mathrm{SS}_{\mathrm{E}}}$
B	SS_{B}	1	$\mathrm{MS}_{\mathrm{B}}=\frac{\mathrm{SS}_{\mathrm{B}}}{\text { d.f }}$	$\mathrm{F}_{\mathrm{B}}=\frac{\mathrm{MS}_{\mathrm{B}}}{\mathrm{SS}_{\mathrm{E}}}$
AB	$\mathrm{SS}_{\mathrm{AB}}$	1	$\mathrm{MS}_{\mathrm{AB}}=\frac{\mathrm{SS}}{\mathrm{AB}}$	
d.f	$\mathrm{F}_{\mathrm{AB}}=\frac{\mathrm{MS}_{\mathrm{AB}}}{\mathrm{SS}_{\mathrm{E}}}$			
Error (or) Residual	SS_{E}	$4(\mathrm{r}-1)$	$\mathrm{MS}_{\mathrm{E}}=\frac{\mathrm{SS}}{\text { d.f }}$	

PROBLEMS:

1. The following table shows the lives in hours of 4 batches of electric bulbs. [2015]

1	1610	1610	1650	1680	1700	1720	1800
2	1580	1620	1620	1700	1750		
3	1460	1550	1600	1620	1640	1740	1820
4	1510	1520	1530	1570	1600	1680	

Perform an analysis of variance of these data and show that a significance tet dose not reject their homogeneity

Solution:

We subtract 1640 from the given values and workout with the new values of $x_{i j}$

Batc hes			lives	of	bulbs				$\mathbf{T}_{\mathbf{i}}$	n_{i}	$\frac{\mathrm{~T}_{\mathrm{i}}^{2}}{\mathrm{n}_{\mathrm{i}}}$
1	-30	-30	10	40	60	80	$\mathbf{1 6 0}$	-	$\mathbf{2 9 0}$	7	12014
2	-60	0	0	60	110	-	-	-	$\mathbf{1 1 0}$	5	2420
3	-180	-90	-40	-20	0	20	$\mathbf{1 0 0}$	$\mathbf{1 8 0}$	$\mathbf{- 3 0}$	8	113
4	-130	-120	-110	-70	-40	40	-	-	$\mathbf{- 4 3 0}$	6	30817
Total									$\mathbf{- 6 0}$	26	45364

$$
\begin{aligned}
\mathrm{N} & =26 \quad \mathrm{~T}=98 \\
\mathrm{C} . \mathrm{F} & =\frac{T^{2}}{N}=369.39 \\
\mathrm{TSS} & =\sum \sum \mathrm{x}_{\mathrm{ij}}^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=1950.62
\end{aligned}
$$

$$
\mathrm{SSC}=\frac{\left(\sum \mathrm{T}_{\mathrm{i}}\right)^{2}}{\mathrm{n}_{\mathrm{i}}}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=452.25
$$

$$
\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}=1498.36
$$

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio
Between Column	$\mathrm{SSC}=452.25$	$\mathrm{~h}-1=3$	$\mathrm{MSC}=150.75$	15075 Error $\mathrm{SSE}=1498.36$
$\mathrm{~N}-\mathrm{h}=22$	$\mathrm{MSE}=68.11$			
Total	$\mathrm{TSS}=1950.62$	$\mathrm{~N}-1=25$		

From the table $\mathrm{F}_{0.05}\left(\mathrm{v}_{1}=3, \mathrm{v}_{2}=22\right)=3.05$
Calculated F < Tabulated F
Conclution: Hence we accept H_{0} the lives of 4 batches of bulbs do not differ significantly.
2. As head of the department of a consumers research organization you have the responsibility of testing and comparing life times of 4 brands of electric bulbs.suppose you test the life time of 3 electric bulbs each of 4 brands, the data is given below,each entry representing the life time of an electric bulb,measured in hundreds of hours.

A	B	C	D
20	25	24	23
19	23	20	20
21	21	22	20

Solution:

$\mathbf{H}_{\mathbf{0}}$: Here the population means are equal.
$\mathbf{H}_{\mathbf{1}}$: The population mean are not equal.

	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{2}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}{ }^{\mathbf{}}$	$\mathbf{X}_{\mathbf{4}}{ }^{\mathbf{2}}$
	20	25	24	23	400	625	576	529
	19	23	20	20	361	529	400	400
	21	21	22	20	441	441	484	400
	60	69	66	63	1202	1595	1460	1329

$\mathrm{N}=$ Total No of Observations $=12$
$\mathrm{T}=$ Grand Total $=258$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=5547$
$T S S=\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}-\frac{T^{2}}{N}=39$
$S S C=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}-\frac{T^{2}}{N}=15 \quad\left(\mathrm{~N}_{1}=\right.$ No of element in each column $)$
$\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}=39-15=24$
ANOVA TABLE

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio
Between Samples	$\mathrm{SSC}=39$	$\mathrm{C}-1=4-1=3$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{C}-1}=5$	$F_{C}=\frac{M S C}{M S E}$
$=1.67$				

$\mathrm{Cal} \mathrm{F}_{\mathrm{C}}=1.67 \& \operatorname{Tab}_{\mathrm{C}}(3,8)=4.07$
Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}} \Rightarrow$ Hence we accept $\mathbf{H}_{\mathbf{0}}$
3. The accompanying data results from an experiment comparing the degree of soiling for fabric co-polymerized with the three different mixtures of methacrcylic acid. Analysis is the given classification

Mixture 1	$\mathbf{0 . 5 6}$	$\mathbf{1 . 1 2}$	$\mathbf{0 . 9 0}$	$\mathbf{1 . 0 7}$	$\mathbf{0 . 9 4}$
Mixture 2	$\mathbf{0 . 7 2}$	$\mathbf{0 . 6 9}$	$\mathbf{0 . 8 7}$	$\mathbf{0 . 7 8}$	$\mathbf{0 . 9 1}$

Mixture 3	0.62	1.08	1.07	0.99	0.93

Solution:

\mathbf{H}_{0} : The true average degree of soiling is identical for 3 mixtures.
$\mathbf{H}_{\mathbf{1}}$: The true average degree of soiling is not identical for 3 mixtures.
We shift the origin

Total	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{T O T A L}$	$\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{2}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}{ }^{\mathbf{2}}$
	0.56	0.72	0.62	$\mathbf{1 . 9}$	0.3136	0.5184	0.3844
	1.12	0.69	1.08	$\mathbf{2 . 8 9}$	1.2544	0.4761	1.1664
	0.90	0.87	1.07	$\mathbf{2 . 8 4}$	0.8100	0.7569	1.1449
	1.07	0.78	0.99	$\mathbf{2 . 8 4}$	1.1449	0.6084	0.9801
	0.94	0.91	0.93	$\mathbf{2 . 7 8}$	0.8836	0.8281	0.8649
	$\mathbf{4 . 5 9}$	$\mathbf{3 . 9 7}$	$\mathbf{4 . 6 9}$		$\mathbf{4 . 4 0 6 5}$	$\mathbf{3 . 1 8 7 9}$	$\mathbf{4 . 5 4 0 7}$

$\mathrm{N}=$ Total No of Observations $=15$
$\mathrm{T}=$ Grand Total $=13.25$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=11.7042$
$\mathrm{TSS}=\sum \mathrm{X}_{1}{ }^{2}+\sum \mathrm{X}_{2}{ }^{2}+\sum \mathrm{X}_{3}{ }^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=0.4309$
$\operatorname{SSC}=\frac{\left(\sum \mathrm{X}_{1}\right)^{2}}{\mathrm{~N}_{1}}+\frac{\left(\sum \mathrm{X}_{2}\right)^{2}}{\mathrm{~N}_{1}}+\frac{\left(\sum \mathrm{X}_{3}\right)^{2}}{\mathrm{~N}_{1}}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=0.0608 \quad\left(\mathrm{~N}_{1}=\right.$ No of element in each column $)$
$\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}=0.4309-0.0608=0.3701$

ANOVA TABLE

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F-Ratio
Between Samples	SSC=0.0608	$\mathrm{C}-1=3-1=2$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{C}-1}=0.030$	$\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSE}}{\mathrm{MC}}$
Within Samples	$\mathrm{SSE}=0.3701$	$\mathrm{N}-\mathrm{C}=15-3=12$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{\frac{\mathrm{~N}-\mathrm{C}}{84}}=0.30$	$\begin{aligned} & \text { MSC } \\ = & 10.144 \end{aligned}$

$\mathrm{Cal} \mathrm{F}_{\mathrm{C}}=10.144 \& \operatorname{TabF}_{\mathrm{C}}(12,2)=19.41$
Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{TabF}_{\mathrm{C}} \Rightarrow$ Hence we accept $\mathbf{H}_{\mathbf{0}}$
4. Analyse the following RBD and find the conclusion

Treatment s		T1	T2	T3	T4
$\stackrel{\text { B1 }}{\sim}$	12	14	20	22	
	B2	17	27	19	15
	B3	15	14	17	12
	B4	18	16	22	12
	B5	19	15	20	14

Solution:

\mathbf{H}_{0} : There is no significant difference between blocks and treatment
\mathbf{H}_{1} : There is no significant difference between blocks and treatment
We subtract 15 from the given value

	T1	T2	T3	T4	Total $=\mathrm{T}_{\mathrm{i}}$	$\left[\mathrm{T}_{\mathrm{i}}{ }^{2}\right] / \mathrm{k}$	$\Sigma \mathrm{X}_{\mathrm{ij}}{ }^{2}$
B1	-3	-1	5	7	8	16	84
B2	2	12	4	0	18	81	164
B3	0	-1	2	-3	-2	1	14
B4	4	0	5	-1	8	16	42
B5	4	0	5	-1	8	16	42
Total $=\mathrm{T}_{\mathrm{j}}$	6	11	23	0	40	130	372
$\left[\mathrm{T}_{\mathrm{j}}{ }^{2}\right] / \mathrm{h}$	7.2	24.2	105.8	0	137.2		
$\sum y_{i j}{ }^{2}$	38	147	119	68	372		
$\begin{gathered} \mathrm{N}=20 \\ \mathrm{~T}=\text { Grand } \text { Total }=40 \end{gathered}$							

Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(40)^{2}}{20}$
$T S S=\sum \sum X_{i j}{ }^{2}-\frac{T^{2}}{N}=292$
$S S C=\frac{\sum T_{J}{ }^{2}}{h}-C . F=57.2$
$\mathrm{SSR}=\sum \sum Y_{i j}{ }^{2}-\frac{T^{2}}{N}=50$
$\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=184.8$

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio	F $_{\text {Tab }}$ Ratio
Between Rows (Blocks)	$\mathrm{SSR}=50$	$\mathrm{~h}-1=3$	$\mathrm{MSR}=12.5$	$\mathrm{~F}_{\mathrm{R}}=1.232$	$\mathrm{F}_{5 \%}(12,4)=$ 5.91
Between Columns (Treatmen ts)	$\mathrm{SSC}=57.2$	$\mathrm{k}-1=4$	$\mathrm{MSC}=$ 19.07	$\mathrm{~F}=1.238$	$\mathrm{F}_{5 \%}(3,12)=$ 3.49
Residual	$\mathrm{SSE}=$ 184.8	$(\mathrm{h}-1)(\mathrm{k}-$ $1)$ $=12$	$\mathrm{MSE}=15.4$		
Total	292				

Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{TabF}_{\mathrm{C}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{R}}<\mathrm{Tab} \mathrm{F}_{\mathrm{R}} \Rightarrow$ hence the difference between the blocks and that treatments are not significant
5. Consider the results given in the following table for an experiment involving 6 treatments in 4 randomized blocks. The treatments are indicated by numbers with in the paranthesis.

1	$\begin{gathered} \hline \mathbf{(1)} \\ 24.7 \end{gathered}$	$\begin{gathered} \hline(3) \\ 27.7 \\ \hline \end{gathered}$	$\begin{gathered} \text { (2) } \\ 20.6 \end{gathered}$	$\begin{gathered} \text { (4) } \\ 16 \end{gathered}$	$\begin{gathered} \text { (5) } \\ 16 \end{gathered}$	$\begin{gathered} \text { (6) } \\ \hline 24.9 \end{gathered}$
2	(3)	(2)	(1)	(4)	(6)	(5)
	22.7	28.8	27.3	15	22.5	17
3	(6)	(4)	(1)	(3)	(2)	(5)
	26.3	19.6	38.5	36.8	39.5	15.4
4	(5)	(2)	(1)	(4)	(3)	(6)
	17.7	31	28.5	14.1	34.9	22.9

Test whether the treatments differ significantly $\left[\left(\mathrm{F}_{0.05}(3,15)=5.42, \mathrm{~F}_{0.05}(5,15)=4.5\right]\right.$

Solution:

We subtract the origin to 25 and workout with new values of $\mathbf{X}_{\mathbf{i j}}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{T o t a l}$ $\mathbf{= T}_{\mathbf{i}}$	$\left[\mathbf{T}_{\mathbf{i}}\right] / \mathbf{k}$	$\boldsymbol{\Sigma \mathbf { X } _ { \mathrm { ij } } { } ^ { 2 }}$
1	-0.3	-404		-8.8	-8.8	-0.1	$\mathbf{- 1 9 . 7}$	64.68	181.6 3
2	22.3	3.8	-2.3		-8		$\mathbf{- 1 6 . 7}$	46.48	195.2 7

3	13.5	14.5	11.8	-5.4	-9.6	1.3	26.1	$\begin{gathered} 113.5 \\ 4 \end{gathered}$	$\begin{gathered} 654.7 \\ 5 \end{gathered}$
4	3.5	6	9.9	-10.9	-7.3	-2.4	-1.2	0.24	$\begin{gathered} 324.1 \\ 2 \end{gathered}$
$\begin{gathered} \text { Total } \\ =T_{j} \end{gathered}$	19	19.9	22.1	-35.1	-33.7	-3.7	-11.5	$\begin{gathered} 224.9 \\ 4 \end{gathered}$	$\begin{gathered} 1355 . \\ 77 \end{gathered}$
$\begin{gathered} {\left[\mathrm{T}_{\mathrm{j}}{ }^{2}\right] /} \\ \mathrm{h} \end{gathered}$	90.25	99	$\begin{gathered} 122.1 \\ 0 \end{gathered}$	3.8	$\begin{gathered} 283.9 \\ 2 \end{gathered}$	3.42	$\begin{gathered} 906.6 \\ 9 \end{gathered}$		

$\mathrm{T}=\mathrm{Grand}$ Total $=-11.5$;
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(-11.5)^{2}}{24}$

$$
\begin{aligned}
& S S R=\frac{\sum T_{i}^{2}}{k}-C . F=224.94-\frac{(-11)^{2}}{24}=219.43 \\
& S S C=\frac{\sum T_{j}^{2}}{h}-C . F=906.69-\frac{(-11)^{2}}{24}=901.18
\end{aligned}
$$

$$
\text { SSE }=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=229.65
$$

ANOVA Table

Source of Variatio \mathbf{n}	Sum of Squares	Degree of freedom	Mean Square	F- Ratio	F $_{\text {Tab Ratio }}$
Between Rows (Blocks)	SSR $=219.43$	$\mathrm{~h}-1=3$	MSR=73.14	4.78 11.75	$\mathrm{F}_{5} \%(3,15)=$ 5.42 $\mathrm{~F}_{5}(5,15)=$ 4.5
Between Columns (Treatme nts)	SSC=901.18	$\mathrm{k}-1=5$	MSC $=180.24$		
Residual	SSE=229.65	$(\mathrm{h}-1)(\mathrm{k}-$ $1)$ $=15$	MSE $=15.31$		
Total	1350.26				

Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{R}}>\mathrm{Tab}_{\mathrm{R}} \Rightarrow$ There is no significant difference between the blocks and there is significant difference between the Treatments.
6. Three Varieties A, B, C of a crop are tested in a randomized block design with four replications. The plot yield in pounds are as follows

A	6	C	5	A	8	B	9
C	8	A	4	B	6	C	9
B	7	B	6	C	10	A	6

Analyze the experimental yield and state your conclusion
Solution:
The table can be given as

	I	II	III	IV
A	6	4	8	6
B	7	6	6	9
C	8	5	10	9

We shift the origin $X_{i j}=x_{i j}-6 ; h=3 ; k=4 ; N=12$

	I	II	III	IV	$\underset{\text { Total }}{\text { \% }}$ (T_{i}	$\left[\mathrm{T}_{\mathrm{i}^{2}}\right] / \mathrm{k}$	$\Sigma X_{* i j}{ }^{2}$
A	0	-2	2	0	0	0	8
B	1	0	0	3	4	4	10
C	2	-1	4	3	8	16	30
Total $=\mathrm{T}^{\text {j }}$ j	3	-3	6	6	12	20	48
$\left[\mathrm{T}_{\text {j }}{ }^{2}\right] / \mathrm{h}$	3	3	12	12	30		

$\mathrm{T}=$ Grand Total $=12$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(12)^{2}}{12}=12$
$T S S=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=48-12=36$
$S S R=\frac{\sum T_{i^{*}}{ }^{2}}{k}-C . F=20-12=8$
$S S C=\frac{\sum T_{*_{j}}{ }^{2}}{h}-C . F=30-12=12$
SSE $=$ TSS - SSC - SSR $=36-8-18=10$
ANOVA Table

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio	F $_{\text {Tab Ratio }}$
Between Rows (Workers)	SSR $=8$	$\mathrm{~h}-1=2$	$\mathrm{MSR}=4$		

Between Columns (Machine)	$\mathrm{SSC}=18$	$\mathrm{k}-1=3$	$\mathrm{MSC}=6$	$\mathrm{~F}_{\mathrm{R}}=2.4$	$\mathrm{~F}_{5 \%}(2,6)$
			$\mathrm{F}_{\mathrm{C}}=3.6$	$=5.14$	
Residual	$\mathrm{SSE}=10$	(h-1)($\mathrm{k}-$ $1)=6$	$\mathrm{MSE}=$ $5 / 3$		$\mathrm{~F}_{5 \%}(3,6)$
				$=4.76$	
Total	36				

Conclusion: $\mathrm{CalF} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}}$ and $\mathrm{Cal}_{\mathrm{R}}<\mathrm{Tab}_{\mathrm{F}} \Rightarrow$ There is no significant difference between the crops and no significant difference between the plots
7. An experiment was designed to study the performances of 4 different detergents for cleaning fuel injectors. The following "cleanliness" readings were obtained with specially designed experiment for 12 tanks of gas distributed over 3 different models of engines:

ENGINES	I	II	III	
	A	45	43	51
	B	47	46	52
	C	48	50	55
	D	42	37	49

Perform the ANOVA and test at 0.01 level of significance whether there are difference in the detergents or in the engines.
Solution :
We shift the origin $X_{i j}=x_{i j}-50 ; h=4 ; k=3 ; N=12$

	I	II	III	$\text { Total }=\mathrm{T}_{\mathrm{i}}$	$\left[\mathrm{T}_{\mathrm{i}^{2}}\right] / \mathrm{k}$	$\Sigma X_{* i j}{ }^{2}$
A	-5	-7	1	-11	40.33	75
B	-3	-4	2	-5	8.33	29
C	-2	0	5	3	3	29
D	-8	-13	-1	-22	161.33	234
Total=T*	-18	-24	7	-35	212.99	367
[$\left.\mathrm{T}_{*}{ }^{2}\right] / \mathrm{h}$	81	144	12.25	237.25		

$\mathrm{T}=$ Grand Total $=-35 \quad, \quad$ Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(-35)^{2}}{12}$
$T S S=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=367-\frac{(-35)^{2}}{12}=264.92$
$S S R=\frac{\sum T_{i^{*}}{ }^{2}}{k}-C . F=212.99-\frac{(-35)^{2}}{12}=110.91$
$S S C=\frac{\sum T_{*_{j}}{ }^{2}}{h}-C . F=237.25-\frac{(-35)^{2}}{12}=135.17$
SSE $=$ TSS - SSC - SSR $=264.92-110.91-135.17=18$.
ANOVA Table

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	$\mathrm{F}-$ Ratio	$\mathrm{F}_{\text {Tab }}$ Ratio
Between Rows (DETERGENT S)	SSR=110.91	$\mathrm{h}-1=3$	$\mathrm{MSR}=36.97$	$\mathrm{F}_{\mathrm{R}}=$ 11.774	$\mathrm{F}_{5 \%}(3,6)$ $=4.76$
Between Columns (ENGINES)	$\mathrm{SSC}=135.1$ 7	$\mathrm{k}-1=2$	$\mathrm{MSC}=$ 7.585	$\mathrm{F}_{\mathrm{C}}=$ 21.52	$5,6)$ $=5.14$
Residual	$\mathrm{SSE}=18.84$	$(\mathrm{h}-1)(\mathrm{k}-$ $1)=6$	$\mathrm{MSE}=3.14$		
Total	264.92				

Conclusion :

$\mathrm{Cal} \mathrm{F}_{\mathrm{C}}>\mathrm{Tab} \mathrm{F}_{\mathrm{C}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{R}}>\mathrm{Tab} \mathrm{F}_{\mathrm{R}} \Rightarrow$ There is significant difference between the DETERGENTS and significant difference between the ENGINES
8. A set of data involving four "four tropical feed stuffs A, B, C, D " tried on 20 chicks is given below. All the twenty chicks are treated alike in all respects except the feeding treatments and each feeding treatment is given to 5 chicks. Analyze the data
(Apr/May 2017)

A	55	49	42	21	52
B	61	112	30	89	63
C	42	97	81	95	92
D	169	137	169	85	154

Solution:

\mathbf{H}_{0} : There is no significant difference between column means as well as row means
\mathbf{H}_{1} : There is no significant difference between column means as well as row means

	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{X}_{\mathbf{5}}$	$\mathbf{T o t a l}$	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{X}_{\mathbf{5}}$
\mathbf{A}	5	-1	-8	-29	2	$\mathbf{- 3 1}$	25	1	64	841	4
\mathbf{B}	11	62	-20	39	13	$\mathbf{1 0 5}$	121	3844	400	1521	169
\mathbf{C}	-8	47	31	45	42	$\mathbf{1 5 7}$	64	2209	961	2025	1764
\mathbf{D}	119	87	119	35	104	$\mathbf{4 6 4}$	14161	7569	14161	1225	10816
Total	$\mathbf{1 2 7}$	$\mathbf{1 9 5}$	$\mathbf{1 2 2}$	$\mathbf{9 0}$	$\mathbf{1 6 1}$	$\mathbf{6 9 5}$	$\mathbf{1 4 3 7 1}$	$\mathbf{1 3 6 2 3}$	$\mathbf{1 5 5 8 6}$	$\mathbf{5 6 1 2}$	$\mathbf{1 2 7 5 3}$

$$
\begin{aligned}
& \mathrm{N}=20 \quad \mathrm{~T}=695 \\
& \mathrm{C} . \mathrm{F}=\frac{T^{2}}{N}=24151.25
\end{aligned}
$$

$$
\begin{aligned}
& T S S=\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2} \sum X_{4}^{2}+\sum X_{5}^{2}-\frac{T^{2}}{N}=37793.75 \\
& S S C=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{4}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{5}\right)^{2}}{N_{1}}-\frac{T^{2}}{N}=1613.50 \\
& \text { (} \mathrm{N}_{1}=\text { No of element in each column) } \\
& \operatorname{SSR}=\frac{\left(\sum Y_{1}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{4}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{5}\right)^{2}}{N_{2}}-\frac{T^{2}}{N}=26234.95 \\
& \text { (} N_{2}=\text { No of element in each row) } \\
& \text { SSE }=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=37793.75-1613.5-26234.95==9945.3
\end{aligned}
$$

ANOVA TABLE

S.V	DF	SS	MSS	F cal	F tab
Column treatment	$\mathrm{c}-1=5-1$ $=4$	$\mathrm{SSC}=1613.5$	$M S C=\frac{S S C}{C-1}=403.375$	$F_{C}=\frac{M S C}{M S E}=2.055$	3.26
Between Row	$\mathrm{r}-1=4-1=3$	$\mathrm{SSR}=26234.95$	$M S R=\frac{S S R}{R-1}=8744.98$	$F_{C}=\frac{M C R}{M S E}=10.552$	3.49
Error	$\mathrm{N}-\mathrm{c}-$ $\mathrm{r}+1=12$	$\mathrm{SSE}=9945.3$	$M S E=\frac{S S E}{12}=828.775$		

Conclusion: $\quad \mathrm{Cal} F_{c}<\operatorname{Tab} F_{c}$, Accept H_{0}
Cal $F_{R}>\operatorname{Tab} F_{R}$, Reject H_{0}
9. Three varieties of coal were analysed by 4 chemists and the ash content is given below. Perform an ANOVA Table

		Chemists			
		A	B	C	D
COAL	I	8	5	5	7
	II	7	6	4	4
	III	3	6	5	4

Solution:

		Chemists				
		\mathbf{B}	\mathbf{C}	\mathbf{D}	TOT	
COAL	I	8	5	5	7	$\mathbf{2 5}$
	II	7	6	4	4	$\mathbf{2 1}$
	III	3	6	5	4	$\mathbf{1 8}$
	TOT	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{6 4}$

$$
\mathrm{N}=12
$$

$$
\begin{aligned}
& \quad \mathrm{T}=64 \\
& \text { C.F }=\frac{T^{2}}{N}=341.33 \\
& T S S=\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2} \sum X_{4}^{2}-\frac{T^{2}}{N}=24.67 \\
& S S C=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}-\frac{T^{2}}{N}=3.34 \quad \quad\left(\mathrm{~N}_{1}=\text { No of element in each column }\right) \\
& S S R=\frac{\left(\sum Y_{1}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{4}\right)^{2}}{N_{2}}-\frac{T^{2}}{N}=6.17 \\
& \mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=24.67-3.34-6.17=15.16
\end{aligned}
$$

ANOVA TABLE

S.V	DF	SS	MSS	F cal	F tab	
Column treatment	$\mathrm{C}-1=4-1$ $=3$	$\mathrm{SSC}=3.34$	$M S C=\frac{S S C}{C-1}=1.11$	$F_{c}=\frac{M S E}{M S C}=2.28$	3.49	
Between Row	$\mathrm{R}-1=3-$ $1=2$	$\mathrm{SSR}=6.17$	$M S R=\frac{S S R}{R-1}=3.09$	$F_{c}=\frac{M C R}{M S E}=1.22$	3.26	
Error	$\mathrm{N}-\mathrm{c}-$ $\mathrm{R}+1=6$	$\mathrm{SSE}=15.16$	$M S E=\frac{S S E}{12}=2.53$			

Conclusion: $\quad \mathrm{Cal} F_{c}>\mathrm{Tab} F_{c}$, Reject H_{0}
Cal $F_{R}>\operatorname{Tab} F_{R}$, Reject H_{0}
10. The following is the latin square of a design when 4 varieties of seed are being tested. Set up the analysis of variance table and state your conclusion. You can carry out the suitable change of origin and scale

A 110	B 100	C 130	D 120
C 120	D 130	A 110	B 110
D 120	C 100	B 110	A 120
B 100	A 140	D 100	C 120

Solution:

Subtracting 100 and dividing by 10

	1	2	3	4	$\text { Total }=T_{i}$	$\left[\mathrm{T}_{\mathrm{i}^{2}}{ }^{\text {] }}\right.$ /n	$\Sigma X_{X_{i j}{ }^{2}}$
1	A1	B0	C3	D2	6	9	14
2	C2	D3	A1	B1	7	12.25	15
3	D2	C0	B1	A2	5	6.25	9
4	B0	A4	D0	C2	6	9	20
Total $=\mathrm{T}_{*}{ }^{\text {j }}$	5	7	5	7	24	36.5	58
	6.25	12.25	6.25	12.25	37		
$\sum y_{i j}{ }^{2}$	9	25	11	13	58		

	Letters					Total=T $\mathbf{T}_{\mathbf{K}}$
$\left[\mathbf{T}_{\mathbf{K}^{2}}\right] / \mathbf{n}$						
A	1	1	2	4	$\mathbf{8}$	16
B	0	1	1	0	$\mathbf{2}$	1
C	3	2	0	2	$\mathbf{7}$	12.25
D	2	3	2	0	$\mathbf{7}$	12.25
Total						$\mathbf{2 4}$

$\mathrm{Q}=\sum \sum \mathrm{Y}_{\mathrm{ij}}{ }^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=22 \quad \mathrm{Q}_{1}=\frac{1}{\mathrm{n}} \sum \mathrm{T}_{\mathrm{i}}^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=0.5$
$\mathrm{Q}_{2}=\frac{1}{\mathrm{n}} \sum \mathrm{T}_{\mathrm{j}}{ }^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=1$
$\mathrm{Q}_{3}=\frac{1}{\mathrm{n}} \sum \mathrm{T}_{\mathrm{K}}{ }^{2}-\frac{\mathrm{T}^{2}}{\mathrm{~N}}=5.5$
$\mathrm{Q}_{4}=\mathrm{Q}-\mathrm{Q}_{1}-\mathrm{Q}_{2}-\mathrm{Q}_{3}=15$

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F-Ratio	$\mathrm{F}_{\text {Tab }}$ Ratio (5\% level)
Between Rows	0.5	3	0.167	$\begin{aligned} & \mathrm{F}_{\mathrm{R}} \\ & =14.97 \end{aligned}$	$\mathrm{F}_{\mathrm{R}}(6,36)=8.9$
Between Columns	1	3	0.333		
Between Letters	5.5	3	1.833	$\begin{aligned} & \mathrm{F}_{\mathrm{C}} \\ & =7.508 \end{aligned}$	$\operatorname{Fc}(6,3)=8.94$
					$\mathrm{F}_{\mathrm{L}}(6,3)=8.94$
Residual	15	6	2.5	$\begin{aligned} & \mathrm{F}_{\mathrm{L}} \\ & =1.364 \end{aligned}$	
Total	22	15			

Conclusion:

$\operatorname{Cal} F_{R}>\operatorname{Tab} F_{R}, \operatorname{Cal} F_{C}<\operatorname{Tab} F_{C}, \operatorname{Cal} F_{L}<\operatorname{Tab} F_{L}$ There is a significant difference between rows and no significant difference between column and also between letters.
11. A Company wants to produce cars for its own use. It has to select the make of the car out of the four makes A, B, C, D available in the market. For this he tries 4 cars of each make by assigning the cars to 4 drivers to run on 4 different routes. The efficiency of the cars is measured in terms of time in hours.
Analyse the experinment data and draw conclusion ($\mathrm{F}_{0.05}(3,5)=5.41$).

$18(\mathrm{C})$	$12(\mathrm{D})$	$16(\mathrm{~A})$	$20(\mathrm{~B})$
$26(\mathrm{D})$	$34(\mathrm{~A})$	$25(\mathrm{~B})$	$31(\mathrm{C})$
$15(\mathrm{~B})$	$22(\mathrm{C})$	$10(\mathrm{D})$	$28(\mathrm{~A})$
$30(\mathrm{~A})$	$20(\mathrm{~B})$	$15(\mathrm{C})$	$9(\mathrm{D})$

Solution:

We subtract 20 from the given value and workout with new value of \mathbf{X}_{ij}

	1	2	3	4	Total= T_{i}	[$\left.\mathrm{T}^{2}{ }^{2}\right] / \mathrm{n}$	$\boldsymbol{\Sigma} \mathrm{X}_{\mathrm{ij}{ }^{2}}$
1	C	D	A	B	-14	49	84
	-2	-8	-4	0			
2	D	A	B	C	36	324	378
	6	14	5	11			
3	B	C	D	A	-5	6.25	193
	-5	2	-10	8			
4	A	B	C	D	-6	9	246
	10	0	-5	-11			
Total $=\mathrm{T}_{\mathrm{j}}$	9	8	-14	8	11	388.25	901
$\left[\mathrm{T}^{2}{ }^{2}\right] / \mathrm{n}$	20.25	16	49	16	101.25		
$\Sigma \mathrm{X}^{\text {i }}$	165	264	166	306	901		

	Letters				Total=T $_{\mathbf{K}}$	$\left[\mathbf{T}_{\mathbf{K}^{2}}\right] / \mathbf{n}$
A	-4	14	8	10	$\mathbf{2 8}$	196
B	0	5	-5	0	$\mathbf{0}$	0
C	-2	11	2	-5	$\mathbf{6}$	9
D	-8	6	-10	-11	$\mathbf{- 2 3}$	132.25
Total						$\mathbf{1 1}$

$\mathrm{T}=\mathrm{Grand}$ Total $=11 ; \quad$ Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(11)^{2}}{16}$

$$
\begin{aligned}
& T S S=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=901-\frac{(11)^{2}}{16}=893.438 \\
& S S R=\frac{\sum T_{i^{*}}{ }^{2}}{n}-C . F=388.25-\frac{(11)^{2}}{16}=380.688 \\
& S S C=\frac{\sum T_{j}{ }^{2}}{n}-C . F=101.25-\frac{(11)^{2}}{16}=93.688
\end{aligned}
$$

$S S L=\frac{\sum T_{K}{ }^{2}}{n}-C . F=337.25-\frac{(11)^{2}}{16}=329.688$
SSE $=$ TSS - SSC - SSR-SSL $=89.374$

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio	$\mathrm{F}_{\text {Tab }}$ Ratio (5\% level)
Between Rows	SSR=380.688	$\mathrm{n}-1=3$	$\begin{gathered} \text { MSR }=126.89 \\ 6 \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}= \\ & 8.519 \end{aligned}$	$\mathrm{F}_{\mathrm{R}}(3$,
Between Columns	SSC=93.688	$\mathrm{n}-1=3$	$\begin{aligned} & \text { MSC } \\ & =31.229 \end{aligned}$		6) $=4.76$
Between Letters	$\begin{gathered} \text { SSL }= \\ 329.688 \end{gathered}$	$\mathrm{n}-1=3$	$\begin{aligned} & \text { MSL=109.89 } \\ & 6 \end{aligned}$	$\mathrm{F}_{\mathrm{C}}$$=2.096$	$\operatorname{Fc}(3,6)=4$
					. 76
Residual	SSE= 89.374	$\begin{gathered} (n-1)(n- \\ 2)=6 \end{gathered}$	$\begin{aligned} & \text { MSE }= \\ & 14.896 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{L}} \\ & =7.378 \end{aligned}$	$F_{L}(3,6)=4$ $.76$
Total	893.438				

Conclusion :

$\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}}, \mathrm{Cal} \mathrm{F}_{\mathrm{L}}>\mathrm{Tab} \mathrm{F}_{\mathrm{L}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{R}}>\mathrm{Tab} \mathrm{F}_{\mathrm{R}} \Rightarrow$ There is significant difference between the rows, no significant difference between the column and significant difference between the letters
12. A variable trial was conducted on wheat with 4 varieties in a Latin square Design. The plan of the experiment and the per plot yield are given below:

C 25	B 23	A 20	D 20
A 19	D 19	C 21	B 18
B 19	A 14	D 17	C 20
D 17	C 20	B 21	A 15

Solution:

Subtract 20 from all the items

	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{T o t a l}$	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{4}}^{\mathbf{2}}$
Y_{1}	5	3	0	0	$\mathbf{8}$	25	9	0	0
Y_{2}	-1	-1	1	-2	$\mathbf{- 3}$	1	1	1	4
Y_{3}	-1	-6	-3	0	$\mathbf{1 0}$	1	36	9	0
Y_{4}	-3	0	1	-5	$\mathbf{- 7}$	9	0	1	25
Total	$\mathbf{0}$	$\mathbf{- 4}$	$\mathbf{- 1}$	$\mathbf{- 7}$	$\mathbf{- 1 2}$	$\mathbf{3 6}$	$\mathbf{4 6}$	$\mathbf{1 1}$	$\mathbf{2 9}$

$\mathbf{H}_{\mathbf{0}}$: There is no significant difference between rows, columns \& treatments.
$\mathbf{H}_{\mathbf{1}}$: There is significant difference between rows, columns \& treatments.

$$
\begin{aligned}
& \mathrm{N}=16 \quad \mathrm{~T}=-12 \\
& \mathrm{C} . \mathrm{F}=\frac{T^{2}}{N}=9 \quad T S S=\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2} \sum X_{4}^{2}+\sum X_{5}^{2}-\frac{T^{2}}{N}=113 \\
& S S C=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{4}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{5}\right)^{2}}{N_{1}}-\frac{T^{2}}{N}=7.5 \\
& \left(\mathrm{~N}_{1}=\text { No of element in each column }\right) \\
& S S R=\frac{\left(\sum Y_{1}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{4}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{5}\right)^{2}}{N_{2}}-\frac{T^{2}}{N}=46.5 \\
& \text { SSK: }
\end{aligned}
$$

					T
A	0	-1	-6	-5	-12
B	3	-2	-1	1	1
C	5	1	0	0	6
D	0	-1	-3	-3	-7

$\operatorname{SSK}=\frac{(-12)^{2}}{4}+\frac{(1)^{2}}{4}+\frac{(6)^{2}}{4}+\frac{(-7)^{2}}{4}-\frac{T^{2}}{N}=48.5$
$\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=113-7.5-46.5-48.5=10.5$
ANOVA TABLE

S.V	DF	SS	MSS	F cal	F tab
Column treatment	$\mathrm{k}-1=3$	$\mathrm{SSC}=7.5$	$M S C=\frac{S S C}{K-1}=2.5$	$F_{C}=\frac{M S C}{M S E}=1.43$	4.76
Between Row	$\mathrm{k}-1=3$	$\mathrm{SSR}=46.5$	$M S R=\frac{S S R}{K-1}=15.5$	$F_{R}=\frac{M C R}{M S E}=8.86$	4.76
Between Treatment	$\mathrm{k}-1=3$	$\mathrm{SSK}=48.5$	$M S K=\frac{S S K}{K-1}=16.17$	$F_{T}=\frac{M S K}{M S E}=9.24$	4.76
Error	$(\mathrm{k}-1)(\mathrm{k}-2)$ $=6$	$\mathrm{SSE}=10.5$	$M S E=\frac{S S E}{(K-1)(K-2)}=1.75$		

Conclusion: $\quad \mathrm{Cal} F_{c}<\mathrm{Tab} F_{c}$
Cal $F_{R}>\operatorname{Tab} F_{R}$
$\mathrm{Cal} F_{T}>\mathrm{Tab} F_{T}$
There is significant difference between treatment and rows but there is no significant difference between columns.
13. Analyse $\mathbf{2}^{\mathbf{2}}$ factorial experiment for the following table

Block	Treatment			
	$\mathbf{(1)}$	kp	k	p
	$\mathbf{6 4}$	$\mathbf{6}$	$\mathbf{2 5}$	$\mathbf{3 0}$

II	\mathbf{k}	$\mathbf{(1)}$	$\mathbf{k p}$	\mathbf{P}
	$\mathbf{1 4}$	75	33	$\mathbf{5 0}$
IIII	$\mathbf{k p}$	\mathbf{p}	\mathbf{k}	$\mathbf{(1)}$
	$\mathbf{1 7}$	$\mathbf{4 1}$	$\mathbf{1 2}$	76
$\mathbf{I V}$	p	\mathbf{k}	$\mathbf{(1)}$	$\mathbf{k p}$
	$\mathbf{2 5}$	33	75	$\mathbf{1 0}$

Solution:

Treatme nt	I	II	III	IV
(l)	64	75	76	75
(k)	25	14	12	33
(p)	30	50	41	25
(kp)	6	33	17	10

We shift the origin $X_{i j}=x_{i j}-37$;

Treatment	I	II	III	IV	Total= $*$	$\left[\mathbf{T}_{\left.\mathbf{i}^{*}{ }^{2}\right] / \mathbf{n}}\right.$	$\boldsymbol{\Sigma} \mathbf{X}_{*_{i j}}{ }^{\mathbf{2}}$		
(l)	27	38	39	38	142	5041	5138		
(k)	-12	-23	-25	-4	-64	1024	1314		
(p)	7	13	4	-12	12	36	378		
(kp)	-31	-4	-20	-27	-82	1681	2106		
Total $=\mathrm{T}_{*_{j}}$	-9	24	-2	-5	8	7782	8936		
$\left[\mathrm{~T}_{*_{j}}\right] / \mathrm{n}$	20.25	144	1	6.25	171.5				

$\mathrm{T}=$ Grand Total $=8: \quad \mathrm{N}=16$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(8)^{2}}{16}=4$
$T S S=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=8936-4=8932$
$S S R=\frac{\sum T_{i^{*}}{ }^{2}}{n}-C . F=7782-4=7778$
$S S C=\frac{\sum T_{*_{j}}{ }^{2}}{n}-C . F=171.5-4=167.5$
SSE $=$ TSS - SSC - SSR $=8932-7778-167.5=986.5$
$[\mathrm{k}]=[\mathrm{kp}]-[\mathrm{p}]+[\mathrm{k}]-[1]=-300 \quad ; \quad[\mathrm{p}]=[\mathrm{kp}]+[\mathrm{p}]-[\mathrm{k}]-[1]=-148$
$[k p]=[k p]-[p]-[k]+[1]=126$
$\mathrm{S}_{\mathrm{k}}=[\mathrm{k}]^{2} / 4 \mathrm{r}=5625 ; \mathrm{S}_{\mathrm{p}}=[\mathrm{p}]^{2} / 4 \mathrm{r}=1369 ; \mathrm{S}_{\mathrm{kp}}=[\mathrm{kp}]^{2} / 4 \mathrm{r}=992.2$

ANOVA Table

Source of Variatio	Sum of Squares	Degree of freedom	Mean Square	F- Ratio	$F_{\text {Tab }}$ Ratio

n					
K	5625	1	5625	$\begin{aligned} & \mathrm{F}_{\mathrm{k}}=51.32 \\ & \mathrm{~F}_{\mathrm{p}}=12.49 \end{aligned}$	$\mathrm{F}_{5 \%}(1,9)=$
P	1369	1	1369		6.99
					$\mathrm{F}_{5 \%}(1,9)=$
Kp	992.25	1	992.25		6.99
		9	109.6	$\mathrm{F}_{\mathrm{kp}}=9.05$	$\mathrm{F}_{5 \%}(1,9)=$
Error	986.5				6.99

Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{k}}>\mathrm{Tab}_{\mathrm{k}}, \mathrm{Cal}_{\mathrm{p}}>\mathrm{Tab} \mathrm{F}_{\mathrm{p}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{kp}}>\mathrm{Tab}_{\mathrm{kp}} \Rightarrow$ There is significant difference between the treatments.
14. Given the following observation for the 2 factors $A \& B$ at two levels compute (i) the main effect (ii) make an analysis of variance.

Treatment Combination	Replication I	Replication II	Replication III
(1)	$\mathbf{1 0}$	$\mathbf{1 4}$	$\mathbf{9}$
A	$\mathbf{2 1}$	$\mathbf{1 9}$	$\mathbf{2 3}$
B	$\mathbf{1 7}$	$\mathbf{1 5}$	$\mathbf{1 6}$
AB	20	$\mathbf{2 4}$	$\mathbf{2 5}$

Solution

$\mathbf{H}_{\mathbf{0}}$: No difference in the Mean effect.
\mathbf{H}_{1} :Tthe is a difference in the Mean effect.
We code the data by subtracting 20

Treatment	Replication			Total	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}^{\mathbf{2}}{ }_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$
(l)	-10	-6	-11	$\mathbf{- 2 7}$	100	36	121
(a)	1	-1	3	$\mathbf{3}$	1	1	9
(b)	-3	-5	-4	$\mathbf{- 1 2}$	9	25	16
(ab)	0	4	5	$\mathbf{9}$	0	16	25
Total				$\mathbf{- 2 7}$	$\mathbf{1 1 0}$	$\mathbf{7 8}$	$\mathbf{1 7 1}$

$\mathrm{T}=$ Grand Total $=-27 \quad \mathrm{~N}=12$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(-27)^{2}}{12}=60.75$
A Contract $=\mathrm{a}+\mathrm{ab}-\mathrm{b}-(1)=3+9+-(12)-(-27)=51$
B Contract $=\mathrm{b}+\mathrm{ab}-\mathrm{a}-(1)=-12+9-3-(-27)=21$
A Contract $=(1)+a b-a-b=-27+9-3-(-12)=-9$
(i) Main effects of $\mathrm{A}=\mathrm{A}$ Contract $/ 2 \mathrm{n}=51 / 6=8.5$

Main effects of $B=B$ Contract $/ 2 n=21 / 6=3.5$
Main effects of $\mathrm{AB}=\mathrm{AB}$ Contract $/ 2 \mathrm{n}=-9 / 6=-1.5$
$T S S=\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}-\frac{T^{2}}{N}=110+78+171-60.75=298.25$
$S S A=\frac{(A \text { contract })^{2}}{4 n}=\frac{(51)^{2}}{12}=216.75$
SSB $=\frac{(B \text { contract })^{2}}{4 n}=\frac{(21)^{2}}{12}=36.75$
SSAB $=\frac{(A B \text { contract })^{2}}{4 n}=\frac{(-9)^{2}}{12}=6.75$
SSE $=\mathrm{TSS}-\mathrm{SSA}-\mathrm{SSB}-\mathrm{SSAB}=298.25-216.75-36.75-6.75=38$
ANOVA Table

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio	F $_{\text {Tab }}$ Ratio
A	SSA=216.75	1	MSA $=216$. 75	$\mathrm{~F}_{\mathrm{A}}=45.63$	$\mathrm{~F}_{5 \%}(1,8)=5.32$
B	$\mathrm{SSB}=36.75$	1	MSB $=36.7$ 5		$\mathrm{~F}_{5 \%}(1,8)=5.32$
AB	$\mathrm{SSAB}=6.75$	1	$\mathrm{MSAB}=6.7$ 5	$\mathrm{~F}_{\mathrm{AB}}=1.42$	$\mathrm{~F}_{5 \%}(1,8)=5.32$
Error	$\mathrm{SSE}=38$	$4(\mathrm{n}-1)=8$	$\mathrm{MSE}=4.75$		
Total	$\mathrm{TSS}=298.25$	$4 \mathrm{n}-1=11$			

Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{A}}>\mathrm{Tab}_{\mathrm{A}}$, Reject H_{0}
Cal $\mathrm{F}_{\mathrm{B}}>\mathrm{Tab} \mathrm{F}_{\mathrm{B}} \quad$ Reject H_{0}
$\mathrm{Cal} \mathrm{F}_{\mathrm{AB}}<\mathrm{TabF}_{\mathrm{AB}} \quad$ Accept H_{0}
15. The following are the number of mistakes made in 5 successive days by 4 technicians working for a photographic laboratory. Test whether the difference among the four sample means can be attributed to chance at $\alpha=0.01$..

Technician	I	II	III	IV
Day 1	6	14	10	9
Day 2	14	9	12	12
Day 3	10	12	7	8
Day 4	8	10	15	10
Day 5	11	14	11	11

Solution:

H_{0} : There is no significant difference between the technicians

H_{1} : Significant difference between the technicians

We shift the origin

Total	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{T O T A L}$	$\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{2}}{ }^{2}$	$\mathbf{X}_{\mathbf{3}}{ }^{\mathbf{2}}$	$\mathbf{X}_{4}{ }^{\mathbf{2}}$
	-4	4	0	-1	$\mathbf{- 1}$	16	16	0	1
	4	-1	2	2	$\mathbf{7}$	16	1	4	4

0	2	-3	-2	-3	0	4	9	4
-2	0	5	0	3	4	0	25	0
1	4	1	1	7	1	16	1	1
-1	9	5	0	13	37	37	39	10

$\mathrm{N}=$ Total No of Observations $=20$
$\mathrm{T}=$ Grand Total $=13$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=8.45$
$T S S=\sum X_{1}{ }^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\sum X_{4}{ }^{2}-C . F=37+37+39+10-8.45=114.55$
$S S C=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}-C . F=\frac{(-1)^{2}}{5}+\frac{(9)^{2}}{5}+\frac{(5)^{2}}{5}+0-8.45=12.95$
SSE $=\mathrm{TSS}-\mathrm{SSC}=114.55-12.95=101.6$
ANOVA Table

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio
Between Samples	$\mathrm{SSC}=12.95$	$\mathrm{C}-1=4-1=3$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{C}-1}=4.317$	F F $=\frac{\mathrm{MSC}}{\mathrm{MSE}}$
Within Samples	$\mathrm{SSE}=101.6$	$\mathrm{~N}-\mathrm{C}=20-4=16$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{N}-\mathrm{C}}=6.35$	

Cal $\mathrm{F}_{\mathrm{C}}=1.471 \& \operatorname{Tab}_{\mathrm{C}}(16,3)=5.29$
Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}} \Rightarrow$ There is no significance difference between the technicians
16. The following data represent the number of units of production per day turned out by different workers using 4 different types of machines. [May/June-2013]

Machine type		A	B	C	D
Workers	1	44	38	47	36
	2	46	40	52	43
	3	34	36	44	32
	4	43	38	46	33
	5	38	42	49	39

(1) Test whether the five men differ with respect to mean productivity and
(2) Test whether the mean productivity is the same for the four different machine types.

Solution:
H_{0} : There is no significant difference between the Machine types and no significant difference between the Workers
H_{1} : Significant difference between the Machine types and no significant difference between the Workers
We shift the origin $X_{i j}=x_{i j}-46 ; h=5 ; k=4 ; N=20$

	A	B	C	D	$\text { Total }=\mathrm{T}_{\mathrm{i}}$	$\left[\mathrm{T}_{\mathrm{i}^{2}}\right] / \mathrm{k}$	$\Sigma X_{* i j}{ }^{2}$
1	-2	-8	1	-10	-19	90.25	169
2	0	-6	6	-3	-3	2.25	81
3	-12	-10	-2	-14	-38	361	444
4	-3	-8	0	-13	-24	144	242
5	-8	-4	3	-7	-16	64	138
$\begin{gathered} \text { Total } \\ =\mathbf{T}_{*_{j}} \end{gathered}$	-25	-36	8	-47	-100	661.5	1074
[$\mathrm{T}_{\mathrm{j}}{ }^{2}$] ${ }^{\text {d }}$	125	259.2	12.8	441.8	838.8		

$\mathrm{T}=\mathrm{Grand}$ Total $=-100$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(-100)^{2}}{20}=500$
$T S S=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=1074-500=574$
$S S R=\frac{\sum T_{i^{*}}{ }^{2}}{k}-C . F=661.5-500=161.5$
$S S C=\frac{\sum T_{*_{j}}{ }^{2}}{h}-C . F=838.8-500=338.8$
SSE $=$ TSS - SSC - SSR $=574-161.5-338.8=73.7$
ANOVA Table

Source of Variatio n	Sum of Squares	Degree of freedom	Mean Square	F- Ratio	$\mathrm{F}_{\text {Tab }}$ Ratio
Between Rows (Workers)	$\begin{aligned} & \mathrm{SSR}=161 . \\ & 5 \end{aligned}$	h-1 $=4$	$\begin{aligned} & \text { MSR }= \\ & 40.375 \end{aligned}$	$\mathrm{F}_{\mathrm{R}}=6.574$	$\begin{aligned} & \mathrm{F}_{5 \%}(4,12)= \\ & 3.26 \end{aligned}$
Between Columns (Machine)	$\begin{aligned} & \text { SSC=338 } \\ & 8 \end{aligned}$	$k-1=3$	$\begin{aligned} & \mathrm{MSC}= \\ & 112.933 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{C}}= \\ & 18.388 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{5 \%}(3,12)= \\ & 3.59 \end{aligned}$
Residual	$\begin{aligned} & \text { SSE = } \\ & 73.7 \end{aligned}$	$\begin{aligned} & (\mathrm{h}-1)(\mathrm{k}- \\ & 1)=12 \end{aligned}$	$\begin{aligned} & \text { MSE } \\ & =6.1417 \end{aligned}$		
Total	1074				

Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}}$ and $\mathrm{Cal}_{\mathrm{R}}<\mathrm{Tab}_{\mathrm{R}} \Rightarrow$ There is no significant difference between the Machine types and no significant difference between the Workers

