ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY
Half Range Expansions:
In many Engineering problems it is required to expand a function f(x) in the range (0, )

In a Fourier series of period 27 or in the range (0, 1) in a Fourier series of period 21. If it is
required to expand f(x) in the interval (0, 1), then it is immaterial what the function may be

outside the range 0 < x < .

If we extend the function f(x) by reflecting it in the Y — axis so that f(—x) = f(x), then the
extended function is even for which b,, = 0. The Fourier expansion of f(x) will contain only

cosine terms.

If we extend the function f(x) by reflecting it in the origin so that f(—x) = —f(x), then the
extended function is odd for which ay, = a,, = 0. The Fourier expansion of f(x) will contain

only sine terms.

Here a function f(x) defined over the interval 0 < x < [ is capable of two distinct half range

series.

(i) Sine Series

(i1) Cosine Series

Problems under Half Range Sine series and Cosine series

1. Expand f(x) = x as a cosine series in 0 < x < [ and deduce the value of

1
1*

1 1 m* R |
+—4+—=—+ == (ii) =
34 54 96 ( )14

. 1 1
(l) _|_2_4_|_3_4_|_...=_

90

MA8451-PROBABILITY AND RANDOM PROCESSES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Solution:
Given f(x) = x
The cosine series is f(x) = =2 + Xy an cos e (D)
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Substituting in equation (1) we get
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Deduction (i)

By Parseval’s identity
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2. Obtain the Sine series for f(x) = xin 0 < x <  and hence deduce that Z;’{’:ln—lz = %

Solution:
Given f(x) = x

The Sine seriesis f(x) = Yp=q1 by, sinnx e eee e (1)
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Substitute in equation (1) we get
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Deduction:

By Parseval’s identity
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Complex or Exponential Form of Fourier series:
1. Find the complex form of the Fourier series of f(x) = e *in—-1<x<1
Solution:

The complex form of the Fourier series in (—1, 1) is given by
f(x) = 3% _ o c e 0 et

Where c,, = %f_llf(x) e~ dx
1 ¥ 1 g
— E Je—xe—innx dx = E je—(1+inn)x dx
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B 2(1 + inm)

_e(=D"—e'(=D"
Bl 2(1 + inm)

MA8451-PROBABILITY AND RANDOM PROCESSES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

_ (e — e‘l)(—l)"( 1—inm )

c
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sinh 1

Hence (1) becomes

= (=1)"(1 — inw .
e X = ( 1)+(n27T2 )sinh 1 e

n=—oo

2. Find the complex form of the Fourier series of f(x) = cos ax in (- &, ™) where ‘a’ is
neither zero nor an integer.

Solution:
Here 2c =2norc=m

Let the complex form of the Fourier series be
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B 1
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Hence (1) becomes cos ax =

Harmonic Analysis:

The process of finding the Fourier series for a function given by numerical values is known as

harmonic analysis.

In harmonic analysis the Fourier coefficients a,, a,, and b,, of the functiony = f(x) in

(0, 2m) are given by
a, = 2[mean value of y in(0, 2m) |
a, = 2[mean value of y cosnx in(0, 2m)]

b,, = 2[mean value of y sinnx in(0, 2m)]
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