ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

AGGREGATION AND COMPOSITION

How to Identify Composition : Guideline

Consider showing composition when:

(1 The lifetime of the part is bound within the lifetime of the composite there is a create-
delete dependency of the part on the whole.

(1 There is an obvious whole-part physical or logical assembly.
(1 Some properties of the composite propagate to the parts, such as the location.

[1 Operations applied to the composite propagate to the parts, such as
destruction, movement, and recording.

Composition in the NextGen Domain Model
In the POS domain, the SalesLineltems may be considered a part of a composite

Sale;

Aggregation in the point-of-sale application.

Sale > 1 SalesLineltem
1 %
Product Product
Catalog 1 s Description

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

SYSTEM SEQUENCE DIAGRAMS

Use cases describe how external actors interact with the software system we are
interested in creating. During this interaction an actor generates system events to a system,
usually requesting some system operation to handle the event.

For example, when a cashier enters an item's ID, the cashier is requesting the POS
system to record that item's sale (the enterltem event). That event initiates an operation upon the
system. The use case text implies the enterltem event, and the SSD makes it concrete and explicit.

A system sequence diagram is a picture that shows, for one particular scenario of
a use case, the events that external actors generate their order, and inter- system events. All
systems are treated as a black box.

Guideline : Draw an SSD for a main success scenario of each use case, and frequent
or complex alternative scenarios.

SSD for a Process Sale scenario.

system as black box A

the name could be "NextGenPOS™ but "System”™ keops it
simple

the *" and underiine imply an instance, and are explained in a
later chapter on saquence diagram notation in the UML

' payment data by

and medium ! some mechanism

external actor to k“ Process Sale Scenario
system .
Cashier System
- makeNewSala ’
: H
a UML locp loop _ | more items | :
interaction e 1 enlerem(itemID, quantity) >
frame, with a ! :
boolean guard . i
expression L& Sadaiiasesny description. total _ _ __ __ ______ |
]]
])
|
: i
]]
' endSale ". a message with k
) < . ramelers
return value(s) | : - w =
‘:5*"0"*“""’ e i total with taxes f it is an abstraction
previous message A 1 = - | qoeeeent OPrasonting the
an abstraction that | - VIR even of
’) . |
| erierning the
ignaces presentation ! makePayment(amount) > enlenng e
]
]
)

the retum line is
cptional If nothing is
returned

change due, receipt) |

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Why to Draw an SSD?
A software system reacts to three things:
1) external events from actors (humans or computers),
2) timer events,
3) faults or exceptions (which are often from external sources).

Therefore, it is useful to know what, precisely, are the external input events
the system events. They are an important part of analyzing system behavior.

System behavior is a description of what a system does, without explaining
how it does it. One part of that description is a system sequence diagram.

RELATIONSHIP BETWEEN SSDS AND USE CASES

An SSD shows system events for one scenario of a use case, therefore it is
generated from inspection of a use case (see Figure below).

SSDs are derived from use cases; they show one

scenario.
Process Sale Scenaro
Cashior System

l makeNewSale f
Simpla cash-only Procass Sale scenario) | >

!

, loop [more tems |

1', Customer arrives ala POS checkout P i on]ef“m{lwm]o qumu‘y) "
with goods andlor services to purchase I '
2. Cashier starts a new sale \
3. Cashier enters ilem idenlifier H ____________ cescnpbon totsl .
4. System records sale line lem and | "
presents item description, price, and : 2
runneng total : :
Cashier repeats steps 34 unlil indicates ['
done \ endSale ’
5 System presents tolal with laxes ! '
calculated. | ?
6. Cashier tolls Customer the total, and Mo mmmmmnnannetOtOIWAaX0S ‘
asks for payment ! !
7. Customer pays and System handles | A
payment : makePayrment(amount) ’

: change due, receipt f

r --------------------------------- |

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

How to Name System Events and Operations?

Which is better, scan(itemID) or enterltem(itemID)?

System events should be expressed at the abstract level of intention rather than in
terms of the physical input device.

Thus "enterltem” is better than "scan™ (that is, laser scan) because it captures the
intent of the operation while remaining abstract and noncommittal with respect to design
choices about what interface is used to capture the system event.

Choose event and operation names at an abstract level.

: :System
: Caghier ‘
better name A ! !
| enteritem(itemID, quantity) I
; >
| |
] |
I |
! scan(itemID, quantity) :
A I g
worse name : :
|
| |
|

Example: Monopoly SSD

The Play Monopoly Game use case is simple, as is the main scenario. The observing
person initializes with the number of players, and then requests the simulation of play,
watching a trace of the output until there is a winner.

SSD for a Play Monopoly Game scenario.

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

:QObsecVer
y '\'(\‘k R &\.\ ‘i} Cau -\0‘ ?m) \
)

1
———=lasGene >’
‘“f) L ne winnec}

-

e— ~éﬁ‘i‘\‘i}.@\‘3§i,$ yace

’

\

T

Process:
Draw SSDs only for the scenarios chosen for the next iteration. Don't create

SSDs for all scenarios, unless you are using an estimation technique that requires
identification of all system operations.

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

