4.4 Code Provisions Design Of Steel Roof Truss

Example:5

Design a steel roof truss to suit the following data,

Span of the truss $=12 \mathrm{~m}$
Type of truss $=$ pan type
Roof cover $=$ Galvanization corrugated (GC) sheeting
Materials = Rolled steel angles

Spacing of roof truss $=5 \mathrm{~m}$

Wind pressure $\quad=1 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

Draw the elevation of the roof truss and the details of joints.

Solution:

Step:1 Dimension of truss

$$
\begin{array}{ll}
\text { Central rise } & =\operatorname{span} / 4 \\
& =12 / 4 \\
& =3 \mathrm{~m}
\end{array}
$$

Purlins are provided at intervals of 1.863 m on the principal rafter

Step:2 Dead loads

Self weight of GC sheeting per purlin at $0.18 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

$$
\begin{aligned}
& =0.18 \times 1.863 \\
& =0.335 \mathrm{KNm}
\end{aligned}
$$

Self weight of purlin at $0.1 \mathrm{KN} / \mathrm{m}$

$$
=0.10 \mathrm{KN} / \mathrm{m}
$$

Total dead load $\quad=0.435 \mathrm{KN} / \mathrm{m}$

Step:3 Live loads
Slope of the truss $=26{ }^{\circ} 34^{\circ}$

Live load of the truss

$$
\begin{aligned}
& =0.75-(10 \times 0.01+6.5 \times 0.02) \\
& =0.52 \mathrm{KN} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

Live load per purlin per metre

$$
\begin{aligned}
& =0.52 \times 1.836 \times \cos 266^{\circ} 34^{\prime} \\
& =0.87 \mathrm{KN}
\end{aligned}
$$

Step:4 Wind loads

$$
\begin{array}{ll}
\mathrm{F} & =(\mathrm{Cpe}-\mathrm{Cpi}) \mathrm{A} \mathrm{pd} \\
\mathrm{Cpe} & =\text { external pressure coefficient } \\
\mathrm{Cpi} & =\text { internal pressure coefficient } \\
\mathrm{A} & =\text { Surface area of structural element or cladding unit } \\
\mathrm{pd} & =\text { design wind pressure }
\end{array}
$$

Slopping angle ,

$$
\begin{aligned}
\Theta & =26 \dot{\circ} 34^{\wedge} \\
\mathrm{Cpe} & =-0.7 \\
\mathrm{Cpi} & =0.2 \\
\mathrm{~F} & =(-0.7-0.2) \mathrm{pd} \\
& =-0.9 \mathrm{pd} \\
& =-0.9 \times 1 \\
& =-0.9 \mathrm{Kn} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

Maximum wind load per purlin per metre

$$
\begin{aligned}
& =\left(-0.9 \times 1.863 x \cos 266^{\circ} 34^{\circ}\right) \\
& =1.5 \mathrm{KN}
\end{aligned}
$$

Step:5 Design of purlin
For continuous purlin, the max factored bending moment and shear force are computed as follow,

$$
\begin{aligned}
\mathrm{M} & =\left(1.5 \times 1.305 \times 5^{\wedge} 2\right) / 10 \\
& =4.89 \mathrm{KNm} \\
\mathrm{~V} & =(1.5 \times 1.305 \times 5) / 2 \\
& =4.9 \mathrm{KN}
\end{aligned}
$$

Adopt ISA 100x75x8mm having section properties given below,

$$
\begin{aligned}
\mathrm{Zx} & =\left(4.38 \times 10^{\wedge} 4\right) \mathrm{mm}^{\wedge} 3 \\
\mathrm{D} & =100 \mathrm{~mm} \\
\mathrm{~b} & =75 \mathrm{~mm} \\
\mathrm{t} & =8 \mathrm{~mm}
\end{aligned}
$$

IS 800:2007 clause 3.7,
(a) Check for section classification is done by computed the rations,

$$
\begin{aligned}
(\mathrm{b} / \mathrm{t}) \quad & =75 / 8 \\
& =9.37<9.4
\end{aligned}
$$

Hence the section considered as plastic .
(b) Check for shear capacity

$$
\begin{aligned}
\mathrm{Av} & =100 \mathrm{X} 8 \\
& =800 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

clause 8.4.1,
$($ Av fy w $/ \sqrt{ } 3 \gamma \mathrm{mo})=(800 \times 250) /\left(\sqrt{ } 3 \times 1.10 \times 10^{\wedge} 3\right)$

$$
=105 \mathrm{KN}>4.9 \mathrm{KN}
$$

The shear capacity of the section is very large compared to the applied shear force.
(c) Check for moment capacity

$$
\begin{aligned}
\mathrm{Md} & =(\beta \mathrm{B} \mathrm{Zx} \text { fy }) / \gamma \mathrm{mo} \\
& =\left(1 \times 4.38 \times 10^{\wedge} 4 \times 250\right) /\left(1.1 \times 10^{\wedge} 6\right) \\
\mathrm{Md} & =9.95 \mathrm{KNm}>4.89 \mathrm{KNm}
\end{aligned}
$$

Step:7 Load on truss
(a) Dead load

Slopping length of rafter,

$$
\begin{aligned}
\mathrm{AD} & =\sqrt{ }\left(5^{\wedge} 2+2.5^{\wedge} 2\right) \\
& =5.59 \mathrm{~m}
\end{aligned}
$$

Spacing of trusses $=5 \mathrm{mc} / \mathrm{c}$
Weight of GC sheeting on half truss (plan area) at $0.18 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

$$
\begin{aligned}
& =5 \times 5 \times 0.18 \\
& =4.5 \mathrm{KN}
\end{aligned}
$$

Weight of purlins (4nos) at $0.10 \mathrm{KN} / \mathrm{m}$
$=4 \mathrm{x} 0.1 \times 5$
$=2 \mathrm{KN}$

Self weight of roof truss $=(\operatorname{span} / 300)+0.05$

$$
\begin{aligned}
& =(10 / 300)+0.05 \\
& =0.083 \mathrm{KN} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

Weight of half roof truss $=0.083 \times 5 \times 5$

$$
=2.075 \mathrm{KN}
$$

\therefore Total load on half truss $=4.5+2+2.075$

$$
=8.57 \mathrm{KN}
$$

Dead load on intermediate- panel point

$$
\begin{aligned}
& =8.57 / 3 \\
& =2.85 \mathrm{KN}
\end{aligned}
$$

Dead load on end panel point

$$
\begin{aligned}
& =2.85 / 2 \\
& =1.425 \mathrm{KN}
\end{aligned}
$$

(b) Live loads

Live load on half truss $=0.52 \times 5 \times 5$

$$
=13 \mathrm{KN}
$$

Live load on intermediate panel point

$$
\begin{aligned}
& =13 / 3 \\
& =4.3 \mathrm{KN}
\end{aligned}
$$

Live load on end panel point

$$
\begin{aligned}
& =4.3 / 2 \\
& =2.15 \mathrm{KN}
\end{aligned}
$$

© Wind loads

Maximum wind load acting perpendicular to the sloping surface

$$
\begin{aligned}
& =-0.9 \times 5 \times 5.59 \\
& =-25.155 \mathrm{KN}
\end{aligned}
$$

Wind load on intermediate- panel point

$$
\begin{aligned}
& =-(25.155 / 3) \\
& =-8.38 \mathrm{KN}
\end{aligned}
$$

Wind load on end panel point

$$
\begin{aligned}
& =-(8.38 / 2) \\
& =4.19 \mathrm{KN}
\end{aligned}
$$

Step:8 Design of truss members
(a) Members $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$

Maximum service load compressive force

$$
=36.17 \mathrm{KN}
$$

Maximum factored compressive force

$$
\begin{aligned}
& =1.5 \times 36.17 \\
& =54.25 \mathrm{KN}
\end{aligned}
$$

Maximum service load tensile force

$$
=22.95 \mathrm{KN}
$$

Maximum factored tensile force

$$
\begin{aligned}
& =1.5 \times 22.95 \\
& =34.42 \mathrm{KN} \\
\text { Length (L) } & =1.863 \mathrm{~m}
\end{aligned}
$$

Effective length (KL) $=1.304 \mathrm{~m}$

Try two angle ISA 50x50x6mm placed back to back

$$
\operatorname{Area}(\mathrm{A})=1136 \mathrm{~mm}
$$

Minimum radius of gyration

$$
\begin{array}{cl}
(\gamma \min) & =15.1 \mathrm{~mm} \\
\text { Slenderness ratio } & =(\mathrm{KL} / \gamma \mathrm{min}) \\
& =1304 / 15.1 \\
& =86.3<180
\end{array}
$$

Stress reduction factor x for column buckling class (c) corresponding to the slenderness
ratio 86.3 and fy $=250 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$

$$
\mathrm{x}=0.56
$$

:Design compressive stress is computed as,

$$
\begin{aligned}
\text { Fcd } & =x \text { fy } / \gamma \mathrm{mo} \\
& =(0.56 \times 250) / 1.25 \\
& =112 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

Design compressive force is given by,

$$
\begin{aligned}
\mathrm{Pd} \quad & =[\mathrm{A} \mathrm{fcd}] \\
& =(1136 \times 112) / 1000 \\
& =127 \mathrm{KN}>54.25 \mathrm{KN}
\end{aligned}
$$

(b) Member DE

Maximum service load tension

$$
=12.83 \mathrm{KN}
$$

Maximum factored load tension

$$
\begin{aligned}
& =1.5 \times 12.83 \\
& =19.24 \mathrm{KN}
\end{aligned}
$$

Maximum service load compression

$$
=9.57 \mathrm{KN}
$$

Maximum factored load compression

$$
\begin{aligned}
& =1.5 \times 9.57 \\
& =14.35 \mathrm{KN} \\
\text { Effective length } & =3 \mathrm{~m}
\end{aligned}
$$

Try a single angle ISA $50 \times 50 x 5 \mathrm{~mm}$ connected by 6 mm thick gusset plate the junction with
two bolts of 16 mm at 50 mm .

$$
\begin{aligned}
\text { Gross area }(\mathrm{A}) & =479 \mathrm{~mm}^{\wedge} 2 \\
\gamma \min & =15.2 \mathrm{~mm}
\end{aligned}
$$

Using 16mm dia bolts,

$$
\begin{aligned}
\text { Anc } & =[50-18] 5 \\
& =160 \mathrm{~mm}^{\wedge} 2 \\
\text { Ago } & =[50-5] 5 \\
& =225 \mathrm{~mm}^{\wedge} 2 \\
\mathrm{Ag} & =479 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

(a) Strength governed by rupture of critical section

$$
\text { Tdn }=[0.9 \text { Anc fy } / \gamma \mathrm{mi}]+[\beta \text { Ago fy } / \gamma \mathrm{mo}]
$$

where,

$$
\beta=1.4-0.076(\mathrm{w} / \mathrm{t})(\mathrm{fy} / \mathrm{fu})(\mathrm{bs} / \mathrm{Lc})
$$

$$
\begin{aligned}
& =1.4-0.076(50 / 5)(250 / 410)(50+25 / 50) \\
\beta & =0.70 \\
\mathrm{Tdn} & =[0.9 \times 160 \times 410 / 1.25]+[0.7 \times 225 \times 250 / 1.10] \times 10^{\wedge} 3 \\
& =83.02 \mathrm{KN} \\
& =\mathrm{T}_{0}
\end{aligned}
$$

(b) Strength governed by yielding of gross section

$$
\begin{aligned}
\mathrm{Tdg} & =\text { Ag fy } / \gamma \mathrm{mo} \\
& =\left(470 \times 250 \times 10^{\wedge} 3\right) / 1.10 \\
& =108.8 \mathrm{KN}
\end{aligned}
$$

(c) Strength governed by block shear

$$
\begin{aligned}
\operatorname{Avg} & =5[50+50] \\
& =500 \mathrm{~mm}^{\wedge} 2 \\
\text { Avn } & =5[50+50]-[1.5 \times 18] \\
& =473 \mathrm{~mm}^{\wedge} 2 \\
\operatorname{Atg} & =[5 \times 25] \\
& =125 \mathrm{~mm}^{\wedge} 2 \\
\text { Atn } & =[(5 \times 25)-(0.5 \times 18)] \\
& =116 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

The block shear strength is the smaller of the value of Tdb1 and Tdb2 as computed using
the equation given below,

$$
\begin{aligned}
\text { Tdb1 } & =[\text { Avg fy } / \sqrt{ } 3 \gamma \mathrm{mo}]+[0.9 \text { Atn fu/ } \gamma \mathrm{mi}] \\
& =[(500 \times 250) /(\sqrt{ } 3 \times 1.1)+(0.9 \times 116 \times 410) / 1.25] \times 10^{\wedge}-3
\end{aligned}
$$

$$
=99.92 \mathrm{KN}
$$

$$
\begin{aligned}
\mathrm{Tdb} 2 & =[0.9 \mathrm{Avn} \mathrm{fu} / \sqrt{ } 3 \gamma \mathrm{mi}]+[\text { Atg fy } / \gamma \mathrm{mo}] \\
& =[(0.9 \times 473 \times 410) /(\sqrt{ } 3 \times 1.25)+(125 \times 250) / 1.10] \times 10^{\wedge} 3 \\
& =109.12 \mathrm{KN}
\end{aligned}
$$

Hence, $\quad \mathrm{Tdb}=$ 109.12 KN
The design shear strength is the least of the three value computed under (a)(b)(c), which are $108.8 \mathrm{KN}, 83.02 \mathrm{KN}, 109.12 \mathrm{KN}$.

The design tensile strength of angle

$$
=83.02 \mathrm{KN}>19.24 \mathrm{KN}
$$

(C) Member BC ,EB

Service load compressive force

$$
=6.95 \mathrm{KN}
$$

Factored compressive force

$$
\begin{aligned}
& =1.5 \mathrm{X} 6.95 \\
& =10.42 \mathrm{KN}
\end{aligned}
$$

Service load tensile force

$$
=6.38 \mathrm{KN}
$$

Factored tensile force $=1.5 \times 6.38$

$$
=9.57 \mathrm{KN}
$$

Effective length $(\mathrm{kL})=0.7 \mathrm{x} 1.6$

$$
=1.12 \mathrm{~m}
$$

Use minimum size angle ISA $50 \times 50 \times 5 \mathrm{~mm}$,

$$
\text { Area }(\mathrm{A})=479 \mathrm{~mm}^{\wedge} 2
$$

$\gamma \min \quad=9.7 \mathrm{~mm}$

Slenderness ratio
$(\lambda)=1120 / 9.7$
$=115$

The stress reduction factor x corresponding to

$$
\begin{array}{ll}
\text { fy } & =250 \mathrm{~N} / \mathrm{mm}^{\wedge} 2 \text { and } \\
\lambda & =115 \\
x & =0.39
\end{array}
$$

Design compressive stress is computed as,

$$
\begin{aligned}
\mathrm{fcd} & =\mathrm{x} \mathrm{fy} / \gamma \mathrm{mo} \\
& =(0.39 \times 250) / 1.25 \\
& =78 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

Design compressive force is given by,

$$
\begin{aligned}
\mathrm{Pd} & =\mathrm{A} \mathrm{fcd} \\
& =[479 \times 78] / 1000 \\
& =37.36 \mathrm{KN}>10.42 \mathrm{KN}
\end{aligned}
$$

(d) Member EA and EF

Max service load tension

$$
=32.21 \mathrm{KN}
$$

Factored tension $=1.5 \times 32.21$

$$
=748.31 \mathrm{KN}
$$

Max service load compression

$$
=18.84 \mathrm{KN}
$$

Factored compression

$$
\begin{aligned}
& =1.5 \times 18.84 \\
& =28.26 \mathrm{KN}
\end{aligned}
$$

Length of member $=3.33 \mathrm{~m}$

Effective length $(\mathrm{kL})=0.7 \times 3.33$

$$
=2.331 \mathrm{~m}
$$

Try minimum two angle ISA $50 \times 50 \times 6 \mathrm{~mm}$ connect by guesst plate 6 mm thick with two 16 mm dia bolts spaced at 50 mm

$$
\begin{aligned}
\operatorname{Area}(\mathrm{A}) & =2 \times 598 \\
& =113.6 \mathrm{~mm}^{\wedge} 2 \\
\gamma \min & =15.1 \mathrm{~mm}
\end{aligned}
$$

i) Design strength due to yielding of cross section ,

$$
\begin{aligned}
\mathrm{Tdj} & =\text { Ag fy } / \gamma \mathrm{mo} \\
& =[(1136+250) / 1.10] \times 10^{\wedge}-3 \\
& =258 \mathrm{KN}
\end{aligned}
$$

(d) Member EA and EF

Max service load tension

$$
=32.21 \mathrm{KN}
$$

Factored tension $=1.5 \times 32.21$

$$
=748.31 \mathrm{KN}
$$

Max service load compression

$$
=18.84 \mathrm{KN}
$$

Factored compression $=1.5 \times 18.84$

$$
=28.26 \mathrm{KN}
$$

Length of member $=3.33 \mathrm{~m}$

Effective length (kL) $=0.7 \times 3.33$
$=2.331 \mathrm{~m}$

Try minimum two angle ISA $50 \times 50 \times 6 \mathrm{~mm}$ connect by guesst plate 6 mm thick with two 16 mm dia bolts spaced at 50 mm

$$
\begin{aligned}
\text { Area }(\mathrm{A}) & =2 \times 598 \\
& =113.6 \mathrm{~mm}^{\wedge} 2 \\
\gamma \min & =15.1 \mathrm{~mm}
\end{aligned}
$$

i) Design strength due to yielding of cross section ,

$$
\begin{aligned}
\mathrm{Tdj} & =\text { Ag fy } / \gamma \mathrm{mo} \\
& =[(1136+250) / 1.10] \times 10^{\wedge}-3 \\
& =258 \mathrm{KN}
\end{aligned}
$$

ii) Design strength governed by tearing at net section,
$\mathrm{Tdn}=\alpha \mathrm{An} \mathrm{fu} / \gamma \mathrm{mi}$
Assume a single line of 16 mm dia bolts of two number spaced 50 mm apart $\mathrm{x}=0.6$

$$
\begin{aligned}
\text { An } & =[(50-18)(6 \times 2)] \\
& =384 \mathrm{~mm}^{\wedge} 2 \\
\mathrm{Tdn} & =[(0.6 \times 384 \times 410) / 1.25] \times 10^{\wedge}-3 \\
& =75.5 \mathrm{KN}>48.31 \mathrm{KN}
\end{aligned}
$$

Hence, the angle section designed for the truss can safely resist the factored loads.

