UNIT-II

DESIGN OF EXPERIMENTS

ANOVA – Analysis of Variance

2.1. Working Rule (One – Way Classification)

Set the null hypothesis H_0 : There is no significance difference between the treatments.

Set the alternative hypothesis H_1 : There is a significance difference between the treatments.

Step: 1 Find N = number of observations

Step: 2 Find T =The total value of observations

Step: 3 Find the Correction Factor C . $F = \frac{T^2}{N}$

Step: 4 Calculate the total sum of squares and find the total sum of squares

$$TSS = (\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \dots) - C.F$$

Step: 5 Column sum of squares SSC $\left(\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_2} + \frac{(\sum X_3)^2}{N_3} + \dots\right) - C.F$

Where N_i = Total number of observation in each column (i = 1, 2, 3, ...)

Step: 6 Prepare the ANOVA to calculate F – ratio

Source of variation	Sum of Degrees	Degrees of Freedom	Mean Square	F - Ratio
Between Samples	SSC	K - 1 RVE OPTIMIZ	$MSC = \frac{SSC}{K-1}$	$F_{c} = \frac{MSC}{MSE} \text{ if}$ $MSC > MSE$
Within Samples	SSE	N - K	$MSE = \frac{SSE}{N - K}$	$F_c = \frac{MSE}{MSC} \text{ if}$ $MSE > MSC$

Step: 7 Find the table value (use chi square table)

Step: 8 Conclusion:

Calculated value < Table value, then we accept null hypothesis.

Calculated value > Table value, then we reject null hypothesis.

PROBLEMS ON ONE WAY ANOVA

1.A completely randomised design experiment with 10 plots and 3 treatments gave the following results.

Plot No 1 3 10 \mathbf{C} Treatment A B \mathbf{C} \mathbf{C} B 5 5 3 4 Yield 4 3 7 1 1 7

Analyse the result for treatment effects.

Solution:

Set the null hypothesis H_0 : There is no significance difference between the treatments.

Set the alternative hypothesis H_1 : There is a significance difference between the treatments.

Treatments	Yields from plots			
A	5	7	3	1
В	4	4	7	1 6
С	3	5	1	1-5

TABLE:

Treatment A		Treatment B		Treatment C	
X_1	X_1^2	X_2	X_2^2	X_3	X_3^2
5	25	4	16	3	9
7	49	4°ERVE O	16 ZE OU	5	25
3	9	7	49	7	7
1	1	-	-	-	-
$\sum X_1 = 16$	$\sum X_1^2 = 84$	$\sum X_2 = 5$	$\sum X_2^2 = 81$	$\sum X_3 = 9$	$\sum X_3^2 = 35$

Step: 1 N = 10

Step: 2 Sum of all the items (T) = $\sum X_1 + \sum X_2 + \sum X_3 = 16 + 15 + 9 = 40$

Step: 3 Find the Correction Factor C . F = $\frac{T^2}{N} = \frac{(40)^2}{10} = 160$

Step: 4 TSS = Total sum of squares

= sum of squares of all the items - C. F

TSS =
$$(\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \dots) - C.F$$

= $(84 + 81 + 35) - 160 = 40$

Step: 5 SSC = Sum of squares between samples

$$SSC = \left(\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_2} + \frac{(\sum X_3)^2}{N_3} + \dots\right) - C.F$$

$$SSC = \left(\frac{(16)^2}{4} + \frac{(15)^2}{3} + \frac{(9)^2}{3} + \dots\right) - 160$$

$$= 64 + 75 + 27 - 160 = 6$$

Step: 6 MSC = Mean squares between samples

$$= \frac{Sum \ of \ squares \ between \ samples}{d.f}$$
$$= \frac{6}{2} = 3$$

SSE = Sum of squares within samples

= Total sum of squares – Sum of squares between samples

$$= 40 - 6 = 34$$

Step: 7 MSE = Mean squares within samples

$$= \frac{Sum \ of \ squares \ within \ samples}{d.f}$$
$$= \frac{34}{7} = 4.86$$

ANOVA TABLE

Sum of	Degrees of	Mean Square	F - Ratio
Degrees	Freedom		
SSC = 6	K-1=3-1=2	$MSC = \frac{SSC}{K-1} = 3$	
SSE = 34	N - K = 10 - 3 = 7	$MSE = \frac{SSE}{N-K} =$	$F_c = \frac{MSE}{MSC} = 1.62$
		4.86	MSC
	Degrees $SSC = 6$	Degrees Freedom $SSC = 6 K - 1 = 3 - 1 = 2$	Degrees Freedom SSC = 6

d.f for (7, 2) at 5% level of significance is 19.35

Step: 8 Conclusion:

Calculated value < Table value, then we accept null hypothesis.

2. Three different machines are used for a production. On the basis of the outputs, set up one – way ANOVA table and test whether the machines are equally effective.

Outputs				
Machine II	Machine III			
9	20			
7	16			
5///	10			
6	14			
	9 7 5			

Given that the value of F at 5% level of significance for (2, 9) d. f is 4.26

Solution:

Set the null hypothesis H_0 : The machines are equally effective.

TABLE:

Treatment A		Treatment B		Treatment C	
X_1	X_1^2	X_2	X_2^2	<i>X</i> ₃	X_3^2
10	100	9	81	20	400
15	225	78SERVE OF	49	16	256
11	121	5	25	10	100
20	400	6	36	14	196
$\sum X_1 = 56$	$\sum X_1^2 = 846$	$\sum X_2 = 27$	$\sum X_2^2 = 191$	$\sum X_3 = 60$	$\sum X_3^2 = 952$

Step: 1 N = 12

Step: 2 Sum of all the items (T) = $\sum X_1 + \sum X_2 + \sum X_3 = 56 + 27 + 60 = 143$

Step: 3 Find the Correction Factor C . $F = \frac{T^2}{N} = \frac{(143)^2}{12} = 1704.08$

Step: 4 TSS = Total sum of squares

= sum of squares of all the items - C. F

TSS =
$$(\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \dots) - C.F$$

= $(846 + 191 + 952) - 1704.08 = 284.92$

Step: 5 SSC = Sum of squares between samples

$$SSC = \left(\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_2} + \frac{(\sum X_3)^2}{N_3} + \dots\right) - C.F$$

$$SSC = \left(\frac{(56)^2}{4} + \frac{(27)^2}{4} + \frac{(60)^2}{4} + \dots\right) - 1704.08$$

$$= 784 + 182.25 + 900 - 1704.08 = 162.17$$

Step: 6 MSC = Mean squares between samples

$$= \frac{Sum \ of \ squares \ between \ samples}{d.f}$$
$$= \frac{162.17}{2} = 81.085$$

SSE = Sum of squares within samples

= Total sum of squares – Sum of squares between samples

$$= 284.92 - 162.17 = 122.75$$

Step: 7 MSE = Mean squares within samples $= \frac{Sum \ of \ squares \ within \ samples}{d.f}$ $= \frac{122.75}{9} = 13.63$

ANOVA TABLE

Source	Sum of	Degrees of	Mean Square	F - Ratio
of	Degrees	Freedom		
variation				
Between	SSC =	K - 1 = 3 - 1 = 2	$MSC = \frac{SSC}{K-1} =$	
Samples	162.17		81.085	
Within	SSE =	N - K = 12 - 3 = 9	$MSE = \frac{SSE}{N-K} =$	$F_c = \frac{MSE}{MSC} = 5.95$
Samples	122.75			$\Gamma_C = \frac{1}{MSC} = 3.93$
~p168	1226		13.63	

d.f for (2, 9) at 5% level of significance is 4.26.

Step: 8 Conclusion:

Calculated value > Table value, then we reject the null hypothesis.

i.e., the three machines are not equally effective.

