
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

ACCESS SPECIFIERS

Access specifier or access modifiers in java specifies accessibility (scope) of a data

member , method, constructor or class. It determines whether a data or method in a class

can be used or invoked by other class or subclass.

Types of Access Specifiers

There are 4 types of java access specifiers:

1. Private

2. Default (no speciifer)

3. Protected

4. Public

The details about accessibility level for access specifiers are shown in following table.

Access Modifiers Default Private Protected Public

Accessible inside the class Yes Yes Yes Yes

Accessible within the subclass

inside the same package
Yes No Yes Yes

Accessible outside the package No No No Yes

Accessible within the subclass

outside the package
No No Yes Yes

Private access modifier

Private data fields and methods are accessible only inside the class where it is declared i.e

accessible only by same class members. It provides low level of accessibility. Encapsulation

and data hiding can be achieved using private specifier.

Example:

Role of private specifier

class PrivateEx{

private int x; // private data

public int y; // public data

private PrivateEx(){} // private

constructor public PrivateEx(int a,int b){ //

public constructor

x=a;

y=b;

}

}

public class Main {

public static void main(String[] args) {

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

PrivateEx obj1=new PrivateEx(); // Error: private constructor cannot be applied

PrivateEx obj2=new PrivateEx(10,20); // public constructor can be applied to

obj2 System.out.println(obj2.y); // public data y is accessible by a non-

member System.out.println(obj2.x); //Error: x has private access in PrivateEx

}

}

In this example, we have created two classes PrivateEx and Main. A class contains private

data member, private constructor and public method. We are accessing these private members

from outside the class, so there is compile time error.

Default access modifier

If the specifier is mentioned, then it is treated as default. There is no default specifier

keyword. Using default specifier we can access class, method, or field which belongs to same

package, but not from outside this package.

Example:

Role of default specifier

class DefaultEx{

int y=10; // default data

}

public class Main {

public static void main(String[] args)

{ DefaultEx obj=new DefaultEx();

System.out.println(obj.y); // default data y is accessible outside the class

}

}

Sample Output:

10

In the above example, the scope of class DefaultEx and its data y is default. So it can be

accessible within the same package and cannot be accessed from outside the package.

Protected access modifier

Protected methods and fields are accessible within same class, subclass inside same pack-

age and subclass in other package (through inheritance). It cannot be applicable to class and

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

interfaces.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

Example:

Role of protected specifier

class Base{

protected void show(){

System.out.println(“In Base”);

}

}

public class Main extends Base{

public static void main(String[] args)

{ Main obj=new Main();

obj.show();

}

}

Sample Output:

In Base

In this example, show() of class Base is declared as protected, so it can be accessed from

outside the class only through inheritance. Chapter 2 explains the concept of inheritance in

detail.

Public access modifier

The public access specifier has highest level of accessibility. Methods, class, and fields

declared as public are accessible by any class in the same package or in other package.

Example:

Role of public specifier

class PublicEx{

public int no=10;

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

public class Main{

public static void main(String[] args)

{ PublicEx obj=new PublicEx();

System.out.println(obj.no);

}

}

Sample Output:

10

In this example, public data no is accessible both by member and non-member of the

class.

STATIC KEYWORD

The static keyword indicates that the member belongs to the class instead of a specific

instance. It is used to create class variable and mainly used for memory management.

The static keyword can be used with:

• Variable (static variable or class variable)

• Method (static method or class method)

• Block (static block)

• Nested class (static class)

• import (static import)

Static variable

Variable declared with keyword static is a static variable. It is a class level variable com-

monly shared by all objects of the class.

• Memory allocation for such variables only happens once when the class is loaded in

the memory.

• scope of the static variable is class scope (accessible only inside the class)

• lifetime is global (memory is assigned till the class is removed by JVM).

• Automatically initialized to 0.

• It is accessible using ClassName.variablename

• Static variables can be accessed directly in static and non-static methods.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

Example :

Without static With static

class StaticEx{

int no=10;

StaticEx(){

System.out.println(no);

no++;

}

}

public class Main{

public static void main(String[] args)

{

StaticEx obj1=new StaticEx();

StaticEx obj2=new StaticEx();

StaticEx obj3=new StaticEx();

}

}

Sample Output:

10

10

10

class StaticEx{

static int no=10;

StaticEx(){

System.out.println(no);

no++;

}

}

public class Main{

public static void main(String[] args)

{

StaticEx obj1=new StaticEx();

StaticEx obj2=new StaticEx();

StaticEx obj3=new StaticEx();

}

}

Sample Output:

10

11

12

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

Static Method

The method declared with static keyword is known as static method. main() is most

common static method.

• It belongs to the class and not to object of a class.

• A static method can directly access only static variables of class and directly

invoke only static methods of the class.

• Static methods cannot access non-static members(instance variables or instance

methods) of the class

• Static method cannot access this and super references

• It can be called through the name of class without creating any instance of that class.

For example, ClassName.methodName()

Example:

class StaticEx{

static int x;

int y=10;

static void display(){

System.out.println(“Static Method “+x); // static method accessing static variable

}

public void show(){

System.out.println(“Non static method “+y);

System.out.println(“Non static method “+x); // non-static method can access static variable

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

}

}

public class Main

{

public static void main(String[] args)

{ StaticEx obj=new StaticEx();

StaticEx.display(); // static method invoked without using

object obj.show();

}

}

Sample Output:

Static Method 0

Non static method 10

Non static method 0

In this example, class StaticEx consists of a static variable x and static method display().

The static method cannot access a non-static variable. If you try to access y inside static

method display(), it will result in compilation error.

/*non-static variable y cannot be referred from a
static void display(){

static context*/

System.out.println(“Static Method “+x+y);

}

Static Block

A static block is a block of code enclosed in braces, preceded by the keyword static.

• The statements within the static block are first executed automatically before main

when the class is loaded into JVM.

• A class can have any number of static blocks.

• JVM combines all the static blocks in a class as single block and executes them.

• Static methods can be invoked from the static block and they will be executed as and

when the static block gets executed.

Syntax:

static{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

…………….

}

Example:

class StaticBlockEx{

StaticBlockEx (){

System.out.println(“Constructor”);

}

static {

System.out.println(“First static block”);

}

static void show(){

System.out.println(“Inside method”);

}

static{

System.out.println(“Second static

block”); show();

}

public static void main(String[] args) {

StaticBlockEx obj=new StaticBlockEx

();

}

static{

System.out.println(“Static in main”);

}

}

Sample Output:

First static block

Second static block

Inside method

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

Static in main

Constructor

Nested class (static class)

Nested class is a class declared inside another class. The inner class must be a static class

declared using keyword static. The static nested class can refer directly to static members of

the enclosing classes, even if those members are private.

Syntax:

class OuterClass{

……..

static class InnerClass{

……….

}

}

We can create object for static nested class directly without creating object for outer class.

For example:

OuterClassName.InnerClassName=new OuterClassName.InnerClassName();

Example:

class Outer{

static int

x=10;

static class

Inner{ int

y=20;

public void show(){

System.out.println(x+y); // nested class accessing its own data &

outer class static data

}

}

}

class Main{

public static void main(String args[]){

Outer.Inner obj=new Outer.Inner(); // Creating object for static nested

class obj.show();

}

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8391-OBJECT ORIENTED PROGRAMMING

Sample Output:

30

Static Import

The static import allows the programmer to access any static members of imported class

directly. There is no need to qualify it by its name.

Syntax:

Import static package_name;

Advantage:

• Less coding is required if you have access any static member of a class oftenly.

Disadvantage:

• Overuse of static import makes program unreadable and unmaintable.

Example:

import static java.lang.System.*;

class StaticImportEx{

public static void main(String args[]){

out.println(“Static Import Example”); //Now no need of System.out

}

}

Sample Output:

Static Import Example

