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4.1 GENERAL WAVE BEHAVIOUR ALONG UNIFORM PARALLEL 

PLANES (or) APPLICATION OF RESTICTIONS TO MAXWELL’S 

EQUATION (or) WAVES BETWEEN PARALLEL PLANES OF 

PERFECT CONDUCTORS: 

 

  

 

 

 

 

 

 

 

 

 

 

Fig: 4.1.1 Parallel conducting planes 

In Fig 4.1.1 consider an electromagnetic wave propagate between a pair of 

parallel perfectly conducting planes of infinite incident in the plane of Y and Z 

direction the Maxwell equation for long conducting rectangular region is given 

by, 

∇ x H = j𝜔 𝜀E                     …….(1) 

∇ x E = -j𝜔 𝜇H                     …….(2) 

∇2 E = 𝛾2 E …….(3) 

∇2 H = 𝛾2 H                        ……..(4) 

Where,  

𝛾2 = −𝜔2𝜇 𝜀       

For non conducting in medium 

 

X=0   

            P        

X=a 
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  ∇2 E = −𝜔2𝜇 𝜀 E …….(5) 

  ∇2 H = −𝜔2𝜇 𝜀 H              ……..(6) 

It can be written as, 

𝜕2𝐸

𝜕𝑥2
 + 
𝜕2𝐸

𝜕𝑦2
 + 
𝜕2𝐸

𝜕𝑧2
 = −𝜔2𝜇 𝜀 E             ……(7) 

𝜕2𝐻

𝜕𝑥2
 + 
𝜕2𝐻

𝜕𝑦2
 + 
𝜕2𝐻

𝜕𝑧2
 = −𝜔2𝜇 𝜀 H             ……(8) 

From the properties of vector algebra, 

 

                 
𝑎𝑥
→         

𝑎𝑦
→         

𝑎𝑧
→ 

∇ x H =     
𝜕

𝜕𝑥
        

𝜕

𝜕𝑦
         

𝜕

𝜕𝑦
 

                 𝐻𝑥        𝐻𝑦       𝐻𝑧 

 

         = 
𝑎𝑥
→  [

𝜕𝐻𝑧

𝜕𝑦
 −  

𝜕𝐻𝑦

𝜕𝑧
] - 

𝑎𝑦
→  [

𝜕𝐻𝑧

𝜕𝑥
 −  

𝜕𝐻𝑥

𝜕𝑧
] + 

𝑎𝑧
→ [

𝜕𝐻𝑦

𝜕𝑥
 −  

𝜕𝐻𝑥

𝜕𝑦
]      …..(9) 

Equ (1) can be written as, 

∇ x H = j𝜔 𝜀 [𝐸𝑥
𝑎𝑥 
→ +𝐸𝑦  

𝑎𝑦 
→ +𝐸𝑧  

𝑎𝑧 
→ ]     

 ∇ x H = j𝜔 𝜀  𝐸𝑥
𝑎𝑥 
→   +   j𝜔 𝜀 𝐸𝑦  

𝑎𝑦 
→   + j𝜔 𝜀 𝐸𝑧  

𝑎𝑧 
→         …….(10) 

Equate equ (9) and (10), 

𝜕𝐻𝑧

𝜕𝑦
 −  

𝜕𝐻𝑦

𝜕𝑧
 = j𝜔 𝜀  𝐸𝑥            ……(11) 

𝜕𝐻𝑥

𝜕𝑧
− 

𝜕𝐻𝑧

𝜕𝑥
  = j𝜔 𝜀 𝐸𝑦            ………(12) 

𝜕𝐻𝑦

𝜕𝑥
 −  

𝜕𝐻𝑥

𝜕𝑦
 =  j𝜔 𝜀 𝐸𝑧            ……….(13) 

 

                 
𝑎𝑥
→         

𝑎𝑦
→         

𝑎𝑧
→ 

∇ x E =     
𝜕

𝜕𝑥
        

𝜕

𝜕𝑦
         

𝜕

𝜕𝑦
 

                 𝐸𝑥        𝐸𝑦       𝐸𝑧 
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         = 
𝑎𝑥
→  [

𝜕𝐸𝑧

𝜕𝑦
 −  

𝜕𝐸𝑦

𝜕𝑧
] - 

𝑎𝑦
→  [

𝜕𝐸𝑧

𝜕𝑥
 −  

𝜕𝐸𝑥

𝜕𝑧
] + 

𝑎𝑧
→ [

𝜕𝐸𝑦

𝜕𝑥
 −  

𝜕𝐸𝑥

𝜕𝑦
]      …..(14) 

Equ (2) can be written as, 

∇ x E = -j𝜔 𝜇 [𝐻𝑥
𝑎𝑥 
→ +𝐻𝑦  

𝑎𝑦 
→ +𝐻𝑧  

𝑎𝑧 
→ ]     

 ∇ x E = -j𝜔 𝜇  𝐻𝑥
𝑎𝑥 
→   +   j𝜔 𝜀 𝐻𝑦  

𝑎𝑦 
→   + j𝜔 𝜀 𝐻𝑧  

𝑎𝑧 
→         …….(15) 

Equate equ (14) & (15) 

𝜕𝐸𝑧

𝜕𝑦
 −  

𝜕𝐸𝑦

𝜕𝑧
 = -j𝜔 𝜇  𝐸𝑥            ……(16) 

𝜕𝐸𝑥

𝜕𝑧
− 

𝜕𝐸𝑧

𝜕𝑥
   = -j𝜔𝜇 𝐸𝑦            ………(17) 

𝜕𝐸𝑦

𝜕𝑥
 −  

𝜕𝐸𝑥

𝜕𝑦
 = −j𝜔 𝜇 𝐸𝑧            ……….(18) 

It is assumed that the propagation is in z direction.  

The radiation of component in this z-direction may be expressed interms of 𝑒−𝛾𝑧 

where 𝛾 is propagation constant , 

𝛾 = α + jβ 

If α = 0 waves propagate without attenuation. 

If 𝛾 = real then β = 0, there is no wave propagation  

Let,      𝐻𝑦 = 𝐻𝑦
𝑜 𝑒−𝛾𝑧                      …….(19) 

Diff w.r.to ‘z’ 

𝜕𝐻𝑦

𝜕𝑧
 = 𝐻𝑦

𝑜 𝑒−𝛾𝑧 (−𝛾) 

𝜕𝐻𝑦

𝜕𝑧
 = −𝛾 𝐻𝑦

𝑜 𝑒−𝛾𝑧  

𝜕𝐻𝑦

𝜕𝑧
 = −𝛾 𝐻𝑦                              ……..(20) 

𝜕𝐻𝑥

𝜕𝑧
 = −𝛾 𝐻𝑥                             ……….(21) 

And also let, 

𝐸𝑦 = 𝐸𝑦
𝑜 𝑒−𝛾𝑧                      …….(22) 

Diff w.r.to ‘z’ 
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𝜕𝐸𝑦

𝜕𝑧
 = 𝐸𝑦

𝑜 𝑒−𝛾𝑧 (−𝛾) 

𝜕𝐸𝑦

𝜕𝑧
 = −𝛾 𝐸𝑦

𝑜 𝑒−𝛾𝑧  

𝜕𝐸𝑦

𝜕𝑧
 = −𝛾 𝐸𝑦                             ……..(23) 

𝜕𝐸𝑥

𝜕𝑧
 = −𝛾 𝐸𝑥                             ……….(24) 

There is no attenuation in y direction. Hence the derivative of y is zero. 

Let      E =  𝐸𝑜 𝑒−𝛾𝑧 

Diff w. r. to ‘z’ 

𝜕𝐸

𝜕𝑧
 = 𝐸𝑜 𝑒−𝛾𝑧 (−𝛾) 

Again diff w. r. to ‘z’ 

𝜕2𝐸

𝜕𝑧2
 = 𝐸𝑜 𝑒−𝛾𝑧 (−𝛾) (−𝛾)  

𝜕2𝐸

𝜕𝑧2
 = 𝐸𝑜 𝑒−𝛾𝑧 𝛾2 

𝜕2𝐸

𝜕𝑧2
 = 𝛾2E 

From equ (7), 

𝜕2𝐸

𝜕𝑥2
 + 0 + 

𝜕2𝐸

𝜕𝑧2
 = −𝜔2𝜇 𝜀 E              

𝜕2𝐸

𝜕𝑥2
 + 𝛾2E = −𝜔2𝜇 𝜀 E                   ……(25) 

From equ (8), 

𝜕2𝐻

𝜕𝑥2
 + 0 + 

𝜕2𝐻

𝜕𝑧2
 = −𝜔2𝜇 𝜀 H              

𝜕2𝐻

𝜕𝑥2
 + 𝛾2H  = −𝜔2𝜇 𝜀 H                   ……(26) 

Sub equ (20) & (21) in (11), (12) & (13) 

From equ (11), 

 −(−𝛾 𝐻𝑦) = j𝜔 𝜀  𝐸𝑥     

  𝛾 𝐻𝑦 = j𝜔 𝜀  𝐸𝑥                                 ………(27) 

From equ (12), 
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−𝛾 𝐻𝑥 − 
𝜕𝐻𝑧

𝜕𝑥
  = j𝜔 𝜀 𝐸𝑦                    ……..(28) 

From equ (13),           

𝜕𝐻𝑦

𝜕𝑥
   =  j𝜔 𝜀 𝐸𝑧                                   ……..(29) 

Sub equ (23) & (24) in (16), (17) & (18) 

From equ (16), 

−(−𝛾 𝐸𝑦) = - j𝜔 µ  𝐻𝑥     

𝛾 𝐸𝑦 = - j𝜔 µ  𝐻𝑥                       …….(30) 

From equ (17), 

(−𝛾 𝐸𝑥) −  
𝜕𝐸𝑧

𝜕𝑥
   = -j𝜔𝜇 𝐻𝑦             

𝛾 𝐸𝑥 + 
𝜕𝐸𝑧

𝜕𝑥
   = j𝜔𝜇 𝐻𝑦            ………(31) 

From equ (18), 

𝜕𝐸𝑦

𝜕𝑥
  = −j𝜔 𝜇 𝐻𝑧                       ……….(32) 

From equ (30), 

𝐻𝑥 = 
−𝛾 𝐸𝑦

j𝜔 µ
                                         ……..(33) 

From equ (28), 

𝐸𝑦 = 
−1

j𝜔 𝜀
 (𝛾 𝐻𝑥 + 

𝜕𝐻𝑧

𝜕𝑥
)                    ……(34) 

Sub equ (34) in equ (33) 

𝐻𝑥 = 
−𝛾 

j𝜔 µ
 (
−1

j𝜔 𝜀
 (𝛾 𝐻𝑥 + 

𝜕𝐻𝑧

𝜕𝑥
))            

𝐻𝑥 = 
𝛾 

𝑗2𝜔2µ 𝜀
 ( 𝛾 𝐻𝑥 + 

𝜕𝐻𝑧

𝜕𝑥
)            

[ 𝑗2 = -1] 

𝐻𝑥 = 
−𝛾 

𝜔2µ 𝜀
 ( 𝛾 𝐻𝑥 + 

𝜕𝐻𝑧

𝜕𝑥
)            

𝐻𝑥 = 
−𝛾2 

𝜔2µ 𝜀
𝐻𝑥 - 

𝛾 

𝜔2µ 𝜀

𝜕𝐻𝑧

𝜕𝑥
 

𝐻𝑥 + 
𝛾2 

𝜔2µ 𝜀
𝐻𝑥 = 

−𝛾 

𝜔2µ 𝜀

𝜕𝐻𝑧

𝜕𝑥
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𝐻𝑥 (1 +  
𝛾2 

𝜔2µ 𝜀
) = 

−𝛾 

𝜔2µ 𝜀

𝜕𝐻𝑧

𝜕𝑥
 

𝐻𝑥 = 

−𝛾 

𝜔2µ 𝜀

𝜕𝐻𝑧
𝜕𝑥

(1 + 
𝛾2 

𝜔2µ 𝜀
)
 

𝐻𝑥 = 

−𝛾 

𝜔2µ 𝜀

𝜕𝐻𝑧
𝜕𝑥

(
𝜔2µ 𝜀 + 𝛾2  

𝜔2µ 𝜀
)
 

 

𝐻𝑥 = (
−𝛾

𝜔2µ 𝜀 + 𝛾2
) 
𝜕𝐻𝑧

𝜕𝑥
 

It is given that, 

𝜔2µ 𝜀 +  𝛾2 = ℎ2 

𝐻𝑥 = (
−𝛾

ℎ2
) 
𝜕𝐻𝑧

𝜕𝑥
 

𝐻𝑥 = 
−𝛾

ℎ2
 
𝜕𝐻𝑧

𝜕𝑥
                       ……..(35) 

To find 𝐻𝑦, we need to solve equ (27) & (31) 

From equ (27), 

𝛾 𝐻𝑦 = j𝜔 𝜀  𝐸𝑥                                  

𝐻𝑦 = 
j𝜔 𝜀  𝐸𝑥

𝛾
                                       …….(36) 

From equ (31), 

𝛾 𝐸𝑥 + 
𝜕𝐸𝑧

𝜕𝑥
   = j𝜔𝜇 𝐻𝑦             

𝛾 𝐸𝑥 = j𝜔𝜇 𝐻𝑦  -  
𝜕𝐸𝑧

𝜕𝑥
    

 𝐸𝑥 = 
1

𝛾
 (j𝜔𝜇 𝐻𝑦 − 

𝜕𝐸𝑧

𝜕𝑥
)                         ……(37) 

Sub equ (37) in equ (36), 

𝐻𝑦 = 
j𝜔 𝜀  

𝛾
 
1

𝛾
 (j𝜔𝜇 𝐻𝑦 − 

𝜕𝐸𝑧

𝜕𝑥
) 

𝐻𝑦 = 
j𝜔 𝜀  

𝛾2
 (j𝜔𝜇 𝐻𝑦) − 

j𝜔 𝜀  

𝛾2
 
𝜕𝐸𝑧

𝜕𝑥
 

𝐻𝑦 = 
−𝜔2µ 𝜀𝐻𝑦

𝛾2
 - 
j𝜔 𝜀  

𝛾2
 
𝜕𝐸𝑧

𝜕𝑥
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𝐻𝑦 +  
𝜔2µ 𝜀𝐻𝑦

𝛾2
 =  

−j𝜔 𝜀  

𝛾2
 
𝜕𝐸𝑧

𝜕𝑥
 

𝐻𝑦 (1 +  
𝜔2µ 𝜀

𝛾2
) =  

−j𝜔 𝜀  

𝛾2
 
𝜕𝐸𝑧

𝜕𝑥
 

 

𝐻𝑦 = 

−j𝜔 𝜀  

𝛾2
 
𝜕𝐸𝑧
𝜕𝑥

𝛾2+ 𝜔2µ 𝜀

𝛾2

 

𝐻𝑦 = 
−j𝜔 𝜀

𝛾2+ 𝜔2µ 𝜀
 
𝜕𝐸𝑧

𝜕𝑥
 

𝐻𝑦 = 
−j𝜔 𝜀

ℎ2
 
𝜕𝐸𝑧

𝜕𝑥
                          ……(38) 

To find 𝐸𝑥, 

Solve equ (27)  & (31), 

From equ (27), 

𝛾 𝐻𝑦 = j𝜔 𝜀  𝐸𝑥 

𝐻𝑦 = 
j𝜔 𝜀  𝐸𝑥

𝛾
                       ……(39) 

From equ (31), 

𝛾 𝐸𝑥 + 
𝜕𝐸𝑧

𝜕𝑥
   = j𝜔𝜇 𝐻𝑦  

Sub equ (39) in equ (31)            

𝛾 𝐸𝑥 + 
𝜕𝐸𝑧

𝜕𝑥
   = j𝜔𝜇 (

j𝜔 𝜀  𝐸𝑥

𝛾
) 

𝛾 𝐸𝑥 + 
𝜕𝐸𝑧

𝜕𝑥
   = 

−𝜔2µ 𝜀𝐸𝑥

𝛾
 

𝛾 𝐸𝑥 + 
𝜔2µ 𝜀𝐸𝑥

𝛾
 = - 

𝜕𝐸𝑧

𝜕𝑥
 

𝐸𝑥 (𝛾 + 
𝜔2µ 𝜀

𝛾
) = - 

𝜕𝐸𝑧

𝜕𝑥
 

𝐸𝑥 = 
− 
𝜕𝐸𝑧
𝜕𝑥

𝛾 + 
𝜔2µ 𝜀

𝛾

 

𝐸𝑥 = 
− 
𝜕𝐸𝑧
𝜕𝑥

 
𝛾2+ 𝜔2µ 𝜀

𝛾
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    𝐸𝑥 = 
− 
𝜕𝐸𝑧
𝜕𝑥

 
ℎ2

𝛾

 

    𝐸𝑥 =  
−𝛾

ℎ2
 (
𝜕𝐸𝑧

𝜕𝑥
)                                  ……..(40)                              

To find 𝐸𝑦: 

Solve equ (28) & (30), 

From equ (30), 

𝛾 𝐸𝑦 = - j𝜔 µ  𝐻𝑥 

𝐻𝑥 = 
−𝛾 𝐸𝑦

j𝜔 µ
                    …….(41) 

Sub equ (41) in equ (28), 

−𝛾 𝐻𝑥 − 
𝜕𝐻𝑧

𝜕𝑥
  = j𝜔 𝜀 𝐸𝑦 

−𝛾 (
−𝛾 𝐸𝑦

j𝜔 µ
) − 

𝜕𝐻𝑧

𝜕𝑥
  = j𝜔 𝜀 𝐸𝑦 

𝛾2 𝐸𝑦

j𝜔 µ
 − 

𝜕𝐻𝑧

𝜕𝑥
  = j𝜔 𝜀 𝐸𝑦 

𝛾2 𝐸𝑦

j𝜔 µ
 − j𝜔 𝜀 𝐸𝑦 = 

𝜕𝐻𝑧

𝜕𝑥
 

𝐸𝑦 [
𝛾2 

j𝜔 µ
 −  j𝜔 𝜀 ] = 

𝜕𝐻𝑧

𝜕𝑥
 

𝐸𝑦 [
𝛾2+ 𝜔2µ 𝜀 

j𝜔 µ
  ] = 

𝜕𝐻𝑧

𝜕𝑥
 

𝐸𝑦 [
ℎ2 

j𝜔 µ
  ] = 

𝜕𝐻𝑧

𝜕𝑥
 

𝐸𝑦 = 
𝜕𝐻𝑧

𝜕𝑥
 [
j𝜔 µ

ℎ2 
  ]                      ……..(42) 

The various components of electric and magnetic field strength in equ (35), (38), 

(40), (42) is expressed interms of 𝐸𝑧 & 𝐻𝑧 . 

There will be z component either in E or H otherwise all the components should 

be zero. 

In general both the 𝐸𝑧 & 𝐻𝑧 may nor present at the same time the solutions are 

divided into two cases. 

Case (i): 
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If 𝐸𝑧 is present and 𝐻𝑧= 0 , then the wave is called transverse magnetic wave or 

TM wave or E wave because the magnetic field strength is completely transverse 

to the direction of propagation z. 

Case (ii): 

If 𝐻𝑧 is present and 𝐸𝑧= 0 , then the wave is called transverse electric wave or 

TE wave or H wave, because the electric field strength is completely transverse 

to the direction of propagation . 

Case (iii): 

Transverse Magnetic Waves or TEM waves are waves that contain neither 𝐸𝑧 

or 𝐻𝑧. Both the electric field and magnetic field components are transverse to the 

direction of propagation, z-direction.  
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TRANSMISSION OF TRANSVERSE ELECTRIC WAVES BETWEEN 

PARALLEL PLANES [𝑬𝒛= 0] 

The general field equations of equation(35), (38), (40), (42)  for 𝐸𝑧= 0 is given 

by, 

𝐻𝑥 = 
−𝛾

ℎ2
 
𝜕𝐻𝑧

𝜕𝑥
 

𝐻𝑦 = 
−j𝜔 𝜀

ℎ2
 
𝜕𝐸𝑧

𝜕𝑥
 = 0 

𝐸𝑥 =  
−𝛾

ℎ2
 (
𝜕𝐸𝑧

𝜕𝑥
) = 0 

𝐸𝑦 = 
𝜕𝐻𝑧

𝜕𝑥
 [
j𝜔 µ

ℎ2 
  ] 

The field components 𝐸𝑥 and 𝐻𝑦 are zero. 

The field components 𝐻𝑥 , 𝐸𝑦 and 𝐻𝑧 are to determined. 

                                                     x 

                                                    
𝑎

2
 

 

 𝐻𝑥 

 

 𝐻𝑧 z 

 

    𝐻𝑦 

                                          - 
𝑎

2
 

 

 y 

 

Fig: 4.1.2  Fields in TE waves (H-waves) 

In the above Fig 4.1.2, 𝐸𝑥 = 𝐸𝑧 = 0 and the electric field 𝐸𝑦 is made wholly 

transverse to the direction of propagation z. 
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The magnetic field components 𝐻𝑥 and 𝐻𝑧, but 𝐻𝑦 =0. The wave is called as 

transverse electric wave or H-wave. 

The wave equation for the field component 𝐸𝑦 can be written as, 

From equ (25) , 

𝜕2𝐸

𝜕𝑥2
 + 𝛾2E = −𝜔2𝜇 𝜀 E                    

𝜕2𝐸𝑦

𝜕𝑥2
 +𝛾2 𝐸𝑦= −𝜔2𝜇 𝜀 𝐸𝑦 

𝜕2𝐸𝑦

𝜕𝑥2
 + 𝛾2 𝐸𝑦 + 𝜔2𝜇 𝜀 𝐸𝑦 = 0 

𝜕2𝐸𝑦

𝜕𝑥2
 + ( 𝛾2   +  𝜔2𝜇 𝜀)𝐸𝑦 = 0 

𝜔2µ 𝜀 +  𝛾2 = ℎ2 

𝜕2𝐸𝑦

𝜕𝑥2
 + ℎ2𝐸𝑦 = 0                                       …….(1) 

Let     𝐸𝑦 = 𝐸𝑦𝑜 𝑒−𝛾𝑧 

Equ (1) is a second order differential equation and the solution of this equation 

is given by, 

𝐸𝑦𝑜 = 𝐶1 sin hx + 𝐶2 coshx                      …….(2) 

Where 𝐶1 and 𝐶2 are arbitrary constants. 

If 𝐸𝑦 is expressed in time and direction 𝐸𝑦 = 𝐸𝑦𝑜 𝑒−𝛾𝑧, then solution becomes 

𝐸𝑦 = [𝐶1 sin hx +  𝐶2 coshx] 𝑒
−𝛾𝑧                   ……(3) 

The tangential component of E is zero at the surface of the conductors for all 

values of Z. 

i. 𝐸𝑦 = 0 at x = 0 

ii. 𝐸𝑦 = 0 at x = a 

These are the boundary conditions to be applied. 

Applying the boundary conditions 𝐸𝑦 = 0 at x = 0 in equ (3) 

0 = [𝐶1 sin h(0) + 𝐶2 cosh (0)] 𝑒
−𝛾𝑧    

                                𝐶2 = 0                       ……(4) 

Sub equ (4) in equ (3), 
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𝐸𝑦 = 𝐶1 sin hx 𝑒
−𝛾𝑧                         ……(5) 

Applying the boundary conditions 𝐸𝑦 = 0 at x = a in equ (5) 

0 = 𝐶1 sin ha 𝑒
−𝛾𝑧   

sin ha = 0 

ha = sin−1 0 

ha = mπ 

h = 
mπ

𝑎
 where m = 1, 2 , 3 ……. 

Sub ‘h’ value in equ (5), 

𝐸𝑦 = 𝐶1 sin (
mπ

𝑎
) x 𝑒−𝛾𝑧                   ……(7) 

Sub 𝐸𝑦 in equ (42), 

𝐸𝑦 = 
𝜕𝐻𝑧

𝜕𝑥
 [
j𝜔 µ

ℎ2 
  ] 

𝜕𝐻𝑧

𝜕𝑥
 = 𝐸𝑦 . 

ℎ2

j𝜔 µ 
 

𝐻𝑧 = ∫𝐸𝑦  .
ℎ2

j𝜔 µ 
 .dx 

𝐻𝑧 = ∫𝐸𝑦  .
(
mπ

𝑎
)
2

j𝜔 µ 
 .dx 

𝐻𝑧 = (
mπ

𝑎
)
2
. 
1

j𝜔 µ 
 ∫𝐸𝑦 .dx 

𝐻𝑧 = (
mπ

𝑎
)
2
. 
1

j𝜔 µ 
 ∫𝐶1 sin (

mπ

𝑎
) x 𝑒−𝛾𝑧 .dx 

∫ sin 𝑎𝑥= 
−𝑐𝑜𝑠𝑎𝑥

𝑎
 

 

𝐻𝑧 = (
mπ

𝑎
)
2
. 
−1

j𝜔 µ 
 . 𝐶1 

𝑐𝑜𝑠(
mπ

𝑎
)𝑥

(
mπ

𝑎
)

 . 𝑒−𝛾𝑧 

 

𝐻𝑧 = 
−1

j𝜔 µ 
 (
mπ

𝑎
) 𝐶1𝑐𝑜𝑠 (

mπ

𝑎
) 𝑥 𝑒−𝛾𝑧                   ……(8) 

Sub equ (8) in equ (35), 
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𝐻𝑥 = 
−𝛾

ℎ2
 
𝜕𝐻𝑧

𝜕𝑥
 

𝐻𝑥 = 
−𝛾

ℎ2
 
𝜕

𝜕𝑥
 (
−1

j𝜔 µ 
 (
mπ

𝑎
) 𝐶1𝑐𝑜𝑠 (

mπ

𝑎
) 𝑥 𝑒−𝛾𝑧   ) 

cos 𝑎𝑥= (-sinax) a 

𝐻𝑥 = 
−𝛾

(
mπ

𝑎
)
2 
−1

j𝜔 µ 
 (
mπ

𝑎
) 𝐶1 (−𝑠𝑖𝑛 (

mπ

𝑎
) 𝑥 ) . 

mπ

𝑎
 𝑒−𝛾𝑧 

𝐻𝑥 =
−𝛾

j𝜔 µ 
𝐶1 𝑠𝑖𝑛 (

mπ

𝑎
) 𝑥𝑒−𝛾𝑧                          …….(9) 

Each value of m specifies a particular field of configuration or mode and is 

designated as 𝑇𝐸𝑚𝑜 mode. 

The second subscript refers to another factor which varies with y, which is found 

in rectangular waveguides. 

The smallest value of m=1, because m=0 makes all fields identically zero. 

Therefore lowest order mode is 𝑇𝐸10. This is also called as the dominant mode in 

TE waves. 

The propagation constant 𝛾 = α +jβ. If the wave propagates without attenuation 

,α = 0 then 𝛾 = jβ. 

sub 𝛾 = jβ in  equation (7), (8), (9), 

 

𝐸𝑦 = 𝐶1 sin (
mπ

𝑎
) x 𝑒−jβ𝑧 

𝐻𝑧 = 
−1

j𝜔 µ 
 (
mπ

𝑎
) 𝐶1𝑐𝑜𝑠 (

mπ

𝑎
) 𝑥 𝑒−jβ𝑧 

  𝐻𝑥 =
−jβ

j𝜔 µ 
𝐶1 𝑠𝑖𝑛 (

mπ

𝑎
) 𝑥𝑒−jβ𝑧 

𝐻𝑥 =
−β

𝜔 µ 
𝐶1 𝑠𝑖𝑛 (

mπ

𝑎
) 𝑥𝑒−jβ𝑧 

The above equations represent the field strength of TE waves between parallel 

conducting planes. 
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TRANSMISSION OF TRANSVERSE ELECTROMAGNETIC WAVE 

BETWEEN PARALLEL PLANES (TEM WAVES) 

Consider the electric field is totally along the x-axis (i.e., 𝐸𝑥 = 𝐸𝑦 = 0) and the 

magnetic field along the y-axis. (i.e., 𝐻𝑥 = 𝐻𝑦 = 0) shown in Fig 4.1.3. 

Both the electric and magnetic field components are transverse to the direction of 

propagation on z, and the wave is said transverse electromagnetic wave or 

principal wave. 

TEM wave is a special case of transverse magnetic wave in which the electric 

field 𝐸𝑧 along the direction of propagation is zero. 

The condition on 𝐸𝑧 is obtained if m is made zero in TE waves. 

TEM is also called as Principal wave. 

 

 

Fig: 4.1.3 Transverse Electromagnetic field vectors 

Accordingly the TEM wave becomes a TM waves with m=0, the field equations 

of TM waves from equation are: 
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𝐻𝑦 = 𝐶4 cos (
𝑚𝜋

𝑎
)x 𝑒−𝑗𝛽𝑧 

𝐸𝑥 = 
𝛽

𝜔𝜀
 𝐶4 cos (

𝑚𝜋

𝑎
)x 𝑒−𝑗𝛽𝑧 

𝐸𝑦 = 
𝑗𝑚𝜋

𝜔𝜀𝑎
 𝐶4 cos (

𝑚𝜋

𝑎
)x𝑒−𝑗𝛽𝑧 

Putting m=0 in the above equations of TM waves, the field equations of TEM 

waves are obtained 

𝐻𝑦 = 𝐶4x𝑒
−𝑗𝛽𝑧                                           ……(1) 

𝐸𝑥 = 
𝛽

𝜔𝜀
 𝐶4 𝑒

−𝑗𝛽𝑧                                       ……(3) 

𝐸𝑦 =0                                            ……(4) 

These fields are not only transverse, but they are constant in amplitude across a 

cross section normal to the direction of propagation. 

 

Characteristics of TEM waves: 

For m = 0 and dielectric is air. 

i. Propagation Constant 

𝛾 = √(
mπ

𝑎
)
2
− 𝜔2µ𝑜 𝜀𝑜 

𝛾 = √− 𝜔2µ𝑜 𝜀𝑜 

𝛾 = j 𝜔√µ𝑜 𝜀𝑜 

𝛾 = α + jβ 

𝛾 = j 𝜔√µ𝑜 𝜀𝑜                                           ……(4) 

Equating real and imaginary parts, 

α =0 

β = 𝜔√µ𝑜 𝜀𝑜                                           …..(5) 

 

ii. Guided Wavelength 

𝜆𝑔 = 
2𝜋

𝛽
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𝜆𝑔 = 
2𝜋

𝜔√µ𝑜 𝜀𝑜
 

𝜔 = 2πf 

𝑣𝑜= 
1

√µ𝑜 𝜀𝑜
 

𝜆𝑔 = 
2𝜋 𝑣𝑜

2𝜋𝑓
 = 𝜆 = Wavelength of free space      …..(6) 

iii. Velocity of Propagation 

𝑣 = 
𝜔

𝛽
 = 

𝜔

𝜔√µ𝑜 𝜀𝑜
 = 

1

√µ𝑜 𝜀𝑜
 = C                               (7) 

Velocity of TEM is independent of frequency and has a familiar free space 

value, C = 3x10^8 m/s.  

iv. From equ (7), cut off frequency is given by, 

𝑓𝑐 = 
m

2𝑎√µ𝑜 𝜀𝑜
 

For m = 0 

𝑓𝑐 = 0                                …….(8) 

Cut off frequency of the TEM waves is zero, indicating all the frequencies down 

to zero can propagate along the guide. 

v. The ratio of the amplitudes of E to H between planes is defined as 

characteristic wave impedance given by 

𝐸𝑥

𝐻𝑦
 = 

𝛽

𝜔𝜀
 = 
𝜔√µ𝑜 𝜀𝑜

𝜔𝜀𝑜
  = √

µ𝑜

𝜀𝑜
 = ƞ                                …….(9) 

Ƞ is the intrinsic impedance of the dielectric medium existing between the 

planes. 

𝐸𝑥 = ƞ𝐻𝑦                                               ………(8) 

vi. The total power propagating in the Z-direction is calculated 

using Poynting theorem 

𝛾 = ∬𝐸 𝑋 𝐻 dx dy 

P = ∫ ∫ (
𝐸𝑥

√2
)

1

𝑦=0

𝑥= +
𝑎

2

𝑥=− 
𝑎

2
 

 (
𝐻𝑦

√2
) dx dy for 1 meter width along y direction  
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P = 
1

2
 𝐸𝑥  𝐻𝑦 [𝑥]

− 
𝑎

2

+
𝑎

2  [𝑦]0
1 

P = 
1

2
 𝐸𝑥  𝐻𝑦 a 

𝐸𝑥 = ƞ𝐻𝑦 

P = 
1

2
 ( ƞ𝐻𝑦) 𝐻𝑦 a 

P = 
1

2
 ƞ a 𝐻𝑦

2 watts / meter of width.          ……(9) 

CHARACTERISTICS OF TE AND TM WAVES: 

The characteristics of TE and TM waves cab be studied by analyzing 

propagation constant 𝛾. 

ℎ2 =  𝜔2µ 𝜀 +  𝛾2  

 𝛾2 = ℎ2 − 𝜔2µ 𝜀 

 

𝛾 = √ℎ2 − 𝜔2µ 𝜀                         ……(1) 

i. Cut-off frequency (𝒇𝒄): 

Sub h = 
mπ

𝑎
 in equ (1), 

𝛾 = √(
mπ

𝑎
)
2
− 𝜔2µ 𝜀 = α + jβ            ……(2) 

When 𝜔2µ 𝜀 > (
mπ

𝑎
)
2
 . (i.e) at higher frequencies, 𝛾 becomes imaginary equal 

equal to jβ. Phase change for the wave occurs and hence the wave propagates. 

At lower frequencies, 𝜔2µ 𝜀 < (
mπ

𝑎
)
2
 so that ‘𝛾’ becomes real equal to the 

attenuation constant ‘α’ and ‘β’ is zero. The wave completely attenuated and 

no propagation takes place. 

As the frequency is decreased a critical frequency 𝜔𝑐 is reached when 𝜔2µ 𝜀 

= (
mπ

𝑎
)
2
. 

The frequency at which wave  motion ceases or the frequency above which 

wave motion exits is called the cutoff frequency of the guide. 
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The system acts as a high pass filter with a cutoff frequency ‘𝑓𝑐’ and is defined 

as the frequency at which the attenuation condition changes to the propagation 

condition. 

At  𝒇 = 𝒇𝒄 , 𝜸 = 0,  

From equ (2), 

√(
mπ

𝑎
)
2
− 𝜔𝑐

2µ 𝜀 = 0  

𝜔𝑐
2µ 𝜀 = (

mπ

𝑎
)
2
 

𝜔𝑐
2 = 

1

µ 𝜀
 (
mπ

𝑎
)
2
 

𝜔𝑐 = √
1

µ 𝜀
 (
mπ

𝑎
) 

𝜔𝑐=  2π𝑓𝑐 

𝑓𝑐 = 
1

2π√µ 𝜀
 . 
mπ

𝑎
 

𝑓𝑐 = 
m

2𝑎√µ 𝜀
                                                  ……(3) 

Cutoff frequency is defined as the frequency at which propagation constant 

changes from being real to imaginary. 

𝛾 = √(
mπ

𝑎
)
2
− 𝜔2µ 𝜀 

𝛾 = 
mπ

𝑎
 √1 − 

𝜔2µ 𝜀

(
mπ

𝑎
)
2 

𝜔𝑐
2µ 𝜀 = (

mπ

𝑎
)
2
 

𝛾 = 
mπ

𝑎
 √1 − 

𝜔2µ 𝜀

𝜔𝑐
2µ 𝜀 

 

𝜔𝑐=  2π𝑓𝑐 

𝜔 = 2π 𝑓 
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𝛾 = 
mπ

𝑎
 √1 − 

𝑓2

𝑓𝑐
2 

                                     ……..(4) 

mπ

𝑎
 = 𝜔𝑐 √µ 𝜀 

 

𝛾 = 𝜔𝑐 √µ 𝜀 √1 − 
𝑓2

𝑓𝑐
2 

                                     ……(5) 

For frequencies below cutoff where 𝑓 < 𝑓𝑐 and 𝛾 is real , 𝛾 = α , β = 0. 

At frequencies above cutoff , 𝒇 > 𝒇𝒄, 𝛾 is imaginary and α = 0. Thus 

propagation will occur and 

𝛾 = jβ  

From equ (4), 

jβ = 
mπ

𝑎
 √1 − 

𝑓2

𝑓𝑐
2 

 

jβ = 
mπ

𝑎
 √−1 (

𝑓2

𝑓𝑐
2 
− 1) 

jβ = 𝑗
mπ

𝑎
 √(

𝑓2

𝑓𝑐
2 
− 1) 

mπ

𝑎
 = 𝜔𝑐 √µ 𝜀 

jβ = 𝑗𝜔𝑐 √µ 𝜀√(
𝑓2

𝑓𝑐
2 
− 1) 

β = 𝜔𝑐 √µ 𝜀√(
𝑓2

𝑓𝑐
2 
− 1)                                 …….(6) 

β = 𝜔𝑐 √µ 𝜀√(
𝑓2−𝑓𝑐

2 

𝑓𝑐
2 ) 

 

β =  
𝜔𝑐 √µ 𝜀

𝑓𝑐
√(𝑓2 − 𝑓𝑐

2) 

𝜔𝑐=  2π𝑓𝑐 

β =  
2π𝑓𝑐 √µ 𝜀

𝑓𝑐
√(𝑓2 − 𝑓𝑐

2) 
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β =  2π √µ 𝜀√(𝑓2 − 𝑓𝑐
2)                                   …….(7) 

(or) 

𝛾 = jβ = √(
mπ

𝑎
)
2
− 𝜔2µ 𝜀 

 

jβ = √− [𝜔2µ 𝜀 − (
mπ

𝑎
)
2
]  

jβ = 𝑗√ 𝜔2µ 𝜀 − (
mπ

𝑎
)
2
  

β = √ 𝜔2µ 𝜀 − (
mπ

𝑎
)
2
  

from equ (3), 

Cut off frequency  𝑓𝑐 = 
m

2𝑎√µ 𝜀
 

 

𝑓𝑐 = 
m v

2𝑎.
                                                    ……(8) 

 v = 
1

√µ 𝜀
 

v is the velocity of propagation = 3 x 10^8 m/s 

 

ii. Wavelength (λ) / Guided Wavelength (𝝀𝒈): 

The distance travelled by a wave to under go a phase shift of 2π radians is 

called wavelength. It is the wavelength in the direction of propagation and 

hence also called as guided wavelength. 

λ = 
2𝜋

𝛽
 = 𝜆𝑔 

𝜆𝑔 = 
2𝜋

√ 𝜔2µ 𝜀− (
mπ

𝑎
)
2
 

                         ……(9) 

 

iii. Cut off Wavelength(𝝀𝒄): 

Wavelength at cutoff frequency is called as cutoff wavelength. 
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𝜆𝑐 = 
𝑣

𝑓𝑐 
 

𝜆𝑐 = 
𝑣
m v

2𝑎.
 
 

𝜆𝑐 = 
2𝑎

𝑚 
                                                 ……(10) 

From equ (9), 

𝜆𝑔 = 
2𝜋

√ 𝜔2µ 𝜀− (
mπ

𝑎
)
2
 

 ,          at cutoff (
mπ

𝑎
)
2
 = 𝜔𝑐

2µ 𝜀  

𝜆𝑔 = 
2𝜋

√ 𝜔2µ 𝜀− 𝜔𝑐
2µ 𝜀  

 

𝜆𝑔 = 
2𝜋

𝜔√µ 𝜀√ 1− 
𝜔𝑐
2

 𝜔2
  

` 

 

𝜔𝑐=  2π𝑓𝑐 

𝜔 = 2πf 

𝜆𝑔 = 
2𝜋

2𝜋𝑓√µ 𝜀√ 1− 
2π𝑓𝑐

2

 2π𝑓2
  

` 

 

𝜆𝑔 = 
1

𝑓√µ 𝜀√ 1− 
𝑓𝑐
2

 𝑓2
  

 

v = 
1

√µ 𝜀
 

𝜆𝑔 = 
𝑣

𝑓√ 1− 
𝑓𝑐
2

 𝑓2
  

 

 

𝜆 = 
𝑣

𝑓
 

𝜆𝑔 = 
𝜆

√ 1− 
𝑓𝑐
2

 𝑓2
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𝑓 = 
𝑣

𝜆
 

𝑓𝑐= 
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𝜆 –Free space wavelength 

𝜆𝑐 – Cutoff wavelength 

𝜆𝑔 – Guide wavelength 

 


