4.1 GENERAL WAVE BEHAVIOUR ALONG UNIFORM PARALLEL PLANES (or) APPLICATION OF RESTICTIONS TO MAXWELL'S EQUATION (or) WAVES BETWEEN PARALLEL PLANES OF

PERFECT CONDUCTORS:

Fig: 4.1.1 Parallel conducting planes
In Fig 4.1.1 consider an electromagnetic wave propagate between a pair of parallel perfectly conducting planes of infinite incident in the plane of Y and Z direction the Maxwell equation for long conducting rectangular region is given by,
$\nabla \times \mathrm{H}=\mathrm{j} \omega \varepsilon \mathrm{E}$
$\nabla \times \mathrm{E}=-\mathrm{j} \omega \mu \mathrm{H}$
$\nabla^{2} \mathrm{E}=\gamma^{2} \mathrm{E}$
$\nabla^{2} \mathrm{H}=\gamma^{2} \mathrm{H}$
Where,
$\gamma^{2}=-\omega^{2} \mu \varepsilon$
For non conducting in medium

$$
\begin{align*}
& \nabla^{2} \mathrm{E}=-\omega^{2} \mu \varepsilon \mathrm{E} \tag{5}\\
& \nabla^{2} \mathrm{H}=-\omega^{2} \mu \varepsilon \mathrm{H} \tag{6}
\end{align*}
$$

It can be written as,
$\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E}$
$\frac{\partial^{2} H}{\partial x^{2}}+\frac{\partial^{2} H}{\partial y^{2}}+\frac{\partial^{2} H}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H}$
From the properties of vector algebra,

Equ (1) can be written as,
$\nabla \times \mathrm{H}=\mathrm{j} \omega \varepsilon\left[E_{x} \overrightarrow{a_{x}}+E_{y} \overrightarrow{a_{y}}+E_{z} \overrightarrow{a_{z}}\right]$
$\nabla \mathrm{xH}=\mathrm{j} \omega \varepsilon E_{x} \overrightarrow{a_{x}}+\mathrm{j} \omega \varepsilon E_{y} \overrightarrow{a_{y}}+\mathrm{j} \omega \varepsilon E_{z} \overrightarrow{a_{z}}$
Equate equ (9) and (10),

$\nabla \times \mathrm{E}=\left|\begin{array}{lll}\overrightarrow{a_{x}} & \overrightarrow{a_{y}} & \overrightarrow{a_{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ E_{x} & E_{y} & E_{z}\end{array}\right|$

$$
\begin{equation*}
=\overrightarrow{a_{x}}\left[\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right]-\overrightarrow{a_{y}}\left[\frac{\partial E_{z}}{\partial x}-\frac{\partial E_{x}}{\partial z}\right]+\overrightarrow{a_{z}}\left[\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}\right] \tag{14}
\end{equation*}
$$

Equ (2) can be written as,
$\nabla \mathrm{xE}=-\mathrm{j} \omega \mu\left[\begin{array}{lll}H_{x} & \overrightarrow{a_{x}}\end{array}+H_{y} \overrightarrow{a_{y}}+H_{z} \overrightarrow{a_{z}}\right]$
$\nabla \times E=-\mathrm{j} \omega \mu H_{x} \overrightarrow{a_{x}}+\mathrm{j} \omega \varepsilon H_{y} \overrightarrow{a_{y}}+\mathrm{j} \omega \varepsilon H_{z} \overrightarrow{a_{z}}$
Equate equ (14) \& (15)
$\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\mathrm{j} \omega \mu E_{x}$
$\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\mathrm{j} \omega \mu E_{y}$
$\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\mathrm{j} \omega \mu E_{z}$
It is assumed that the propagation is in z direction.
The radiation of component in this z-direction may be expressed interms of $e^{-\gamma z}$ where γ is propagation constant,
$\gamma=\alpha+\mathrm{j} \beta$
If $\alpha=0$ waves propagate without attenuation.
If $\gamma=$ real then $\beta=0$, there is no wave propagation
Let, $\quad H_{y}=H_{y}^{o} e^{-\gamma z}$
Diff w.r.to ' z '

$\frac{\partial H_{y}}{\partial z}=-\gamma H_{y}^{o} e^{-\gamma z}$
$\frac{\partial H_{y}}{\partial z}=-\gamma H_{y}$
$\frac{\partial H_{x}}{\partial z}=-\gamma H_{x}$
And also let,
$E_{y}=E_{y}^{o} e^{-\gamma z}$
Diff w.r.to ' z '
$\frac{\partial E_{y}}{\partial z}=E_{y}^{o} e^{-\gamma z}(-\gamma)$
$\frac{\partial E_{y}}{\partial z}=-\gamma E_{y}^{o} e^{-\gamma z}$
$\frac{\partial E_{y}}{\partial z}=-\gamma E_{y}$
$\frac{\partial E_{x}}{\partial z}=-\gamma E_{x}$
There is no attenuation in y direction. Hence the derivative of y is zero.
Let $\mathrm{E}=E_{o} e^{-\gamma z}$
Diff w. r. to ' z '
$\frac{\partial E}{\partial z}=E_{o} e^{-\gamma z}(-\gamma)$
Again diff w. r. to ' z '
$\frac{\partial^{2} E}{\partial z^{2}}=E_{o} e^{-\gamma z}(-\gamma)(-\gamma)$
$\frac{\partial^{2} E}{\partial z^{2}}=E_{O} e^{-\gamma z} \gamma^{2}$
$\frac{\partial^{2} E}{\partial z^{2}}=\gamma^{2} \mathrm{E}$
From equ (7),
$\frac{\partial^{2} E}{\partial x^{2}}+0+\frac{\partial^{2} E}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{E}$
$\frac{\partial^{2} E}{\partial x^{2}}+\gamma^{2} \mathrm{E}=-\omega^{2} \mu \varepsilon \mathrm{E}$
From equ (8),
$\frac{\partial^{2} H}{\partial x^{2}}+0+\frac{\partial^{2} H}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \mathrm{H}$
$\frac{\partial^{2} H}{\partial x^{2}}+\gamma^{2} \mathrm{H}=-\omega^{2} \mu \varepsilon \mathrm{H}$
Sub equ (20) \& (21) in (11), (12) \& (13)
From equ (11),

$$
\begin{align*}
& -\left(-\gamma H_{y}\right)=\mathrm{j} \omega \varepsilon E_{x} \\
& \gamma H_{y}=\mathrm{j} \omega \varepsilon E_{x} \tag{27}
\end{align*}
$$

From equ (12),
$-\gamma H_{x}-\frac{\partial H_{z}}{\partial x}=\mathrm{j} \omega \varepsilon E_{y}$
From equ (13),
$\frac{\partial H_{y}}{\partial x}=\mathrm{j} \omega \varepsilon E_{z}$
Sub equ (23) \& (24) in (16), (17) \& (18)
From equ (16),
$-\left(-\gamma E_{y}\right)=-\mathrm{j} \omega \mu H_{x}$
$\gamma E_{y}=-\mathrm{j} \omega \mu H_{x}$
From equ (17),
$\left(-\gamma E_{x}\right)-\frac{\partial E_{z}}{\partial x}=-\mathrm{j} \omega \mu H_{y}$
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y}$
From equ (18),
$\frac{\partial E_{y}}{\partial x}=-\mathrm{j} \omega \mu H_{z}$
From equ (30),
$H_{x}=\frac{-\gamma E_{y}}{\mathrm{j} \omega \mu}$
From equ (28),
$E_{y}=\frac{-1}{\mathrm{j} \omega \varepsilon}\left(\gamma H_{x}+\frac{\partial H_{z}}{\partial x}\right)$
Sub equ (34) in equ (33)

$H_{x}=\frac{\gamma}{j^{2} \omega^{2} \mu \varepsilon}\left(\gamma H_{x}+\frac{\partial H_{z}}{\partial x}\right)$
$\left[j^{2}=-1\right]$
$H_{x}=\frac{-\gamma}{\omega^{2} \mu \varepsilon}\left(\gamma H_{x}+\frac{\partial H_{z}}{\partial x}\right)$
$H_{x}=\frac{-\gamma^{2}}{\omega^{2} \mu \varepsilon} H_{x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{Z}}{\partial x}$
$H_{x}+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon} H_{x}=\frac{-\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{Z}}{\partial x}$
$H_{x}\left(1+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)=\frac{-\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x}$
$H_{x}=\frac{\frac{-\gamma \partial H_{Z}}{\omega^{2} \mu \varepsilon \partial x}}{\left(1+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)}$
$H_{x}=\frac{\frac{-\gamma \partial H_{Z}}{\omega^{2} \mu \varepsilon \partial x}}{\left(\frac{\omega^{2} \mu \varepsilon+\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)}$
$H_{x}=\left(\frac{-\gamma}{\omega^{2} \mu \varepsilon+\gamma^{2}}\right) \frac{\partial H_{Z}}{\partial x}$
It is given that,
$\omega^{2} \mu \varepsilon+\gamma^{2}=h^{2}$
$H_{x}=\left(\frac{-\gamma}{h^{2}}\right) \frac{\partial H_{z}}{\partial x}$
$H_{x}=\frac{-\gamma}{h^{2}} \frac{\partial H_{Z}}{\partial x}$
To find H_{y}, we need to solve equ (27) \& (31)
From equ (27),
$\gamma H_{y}=\mathrm{j} \omega \in E_{x}$
$H_{y}=\frac{\mathrm{j} \omega \varepsilon E_{x}}{\gamma}$
From equ (31),
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y}$

$$
\begin{equation*}
E_{x}=\frac{1}{\gamma}\left(\mathrm{j} \omega \mu H_{y}-\frac{\partial E_{z}}{\partial x}\right) \tag{37}
\end{equation*}
$$

Sub equ (37) in equ (36),
$H_{y}=\frac{\mathrm{j} \omega \varepsilon}{\gamma} \frac{1}{\gamma}\left(\mathrm{j} \omega \mu H_{y}-\frac{\partial E_{z}}{\partial x}\right)$
$H_{y}=\frac{\mathrm{j} \omega \varepsilon}{\gamma^{2}}\left(\mathrm{j} \omega \mu H_{y}\right)-\frac{\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}$
$H_{y}=\frac{-\omega^{2} \mu \varepsilon H_{y}}{\gamma^{2}}-\frac{\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}$
$H_{y}+\frac{\omega^{2} \mu \varepsilon H_{y}}{\gamma^{2}}=\frac{-\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}$
$H_{y}\left(1+\frac{\omega^{2} \mu \varepsilon}{\gamma^{2}}\right)=\frac{-\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{Z}}{\partial x}$
$H_{y}=\frac{\frac{-\mathrm{j} \omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}}{\frac{\gamma^{2}+\omega^{2} \mu \varepsilon}{\gamma^{2}}}$
$H_{y}=\frac{-\mathrm{j} \omega \varepsilon}{\gamma^{2}+\omega^{2} \mu \varepsilon} \frac{\partial E_{z}}{\partial x}$
$H_{y}=\frac{-\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{z}}{\partial x}$
To find E_{x},
Solve equ (27) \& (31),
From equ (27),
$\gamma H_{y}=\mathrm{j} \omega \varepsilon E_{x}$
$H_{y}=\frac{\mathrm{j} \omega \varepsilon E_{x}}{\gamma}$
From equ (31),
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu H_{y}$
Sub equ (39) in equ (31)
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\mathrm{j} \omega \mu\left(\frac{\mathrm{j} \omega \varepsilon E_{x}}{\gamma}\right)$
$\gamma E_{x}+\frac{\partial E_{z}}{\partial x}=\frac{-\omega^{2} \mu \varepsilon E_{x}}{\gamma}$
$\gamma E_{x}+\frac{\omega^{2} \mu \varepsilon E_{x}}{\gamma}-\frac{\partial E_{z}}{\partial x}$
$\gamma E_{x}+\frac{\omega^{2} \mu \varepsilon E_{x}}{\gamma}=-\frac{\partial E_{Z}}{\partial x}$
$E_{x}\left(\gamma+\frac{\omega^{2} \mu \varepsilon}{\gamma}\right)=-\frac{\partial E_{Z}}{\partial x}$
$E_{x}=\frac{-\frac{\partial E_{Z}}{\partial x}}{\gamma+\frac{\omega^{2} \mu \varepsilon}{\gamma}}$
$E_{x}=\frac{-\frac{\partial E_{Z}}{\partial x}}{\frac{\gamma^{2}+\omega^{2} \mu \varepsilon}{\gamma}}$

$$
\begin{align*}
& E_{x}=\frac{-\frac{\partial E_{z}}{\partial x}}{\frac{h^{2}}{\gamma}} \\
& E_{x}=\frac{-\gamma}{h^{2}}\left(\frac{\partial E_{z}}{\partial x}\right) \tag{40}
\end{align*}
$$

To find E_{y} :
Solve equ (28) \& (30),
From equ (30),
$\gamma E_{y}=-\mathrm{j} \omega \mu H_{x}$
$H_{x}=\frac{-\gamma E_{y}}{j \omega \mu}$
Sub equ (41) in equ (28),
$-\gamma H_{x}-\frac{\partial H_{z}}{\partial x}=\mathrm{j} \omega \varepsilon E_{y}$
$-\gamma\left(\frac{-\gamma E_{y}}{\mathrm{j} \omega \mu}\right)-\frac{\partial H_{z}}{\partial x}=\mathrm{j} \omega \varepsilon E_{y}$
$\frac{\gamma^{2} E_{y}}{\mathrm{j} \omega \mu}-\frac{\partial H_{z}}{\partial x}=\mathrm{j} \omega \varepsilon E_{y}$
$\frac{\gamma^{2} E_{y}}{\mathrm{j} \omega \mu}-\mathrm{j} \omega \varepsilon E_{y}=\frac{\partial H_{z}}{\partial x}$
$E_{y}\left[\frac{\gamma^{2}}{\mathrm{j} \omega \mu}-\mathrm{j} \omega \varepsilon\right]=\frac{\partial H_{z}}{\partial x}$
$E_{y}\left[\frac{\gamma^{2}+\omega^{2} \mu \varepsilon}{\mathrm{j} \omega \mu}\right]=\frac{\partial H_{z}}{\partial x}$
$E_{y}\left[\frac{h^{2}}{j \omega \mu}\right]=\frac{\partial H_{z}}{\partial x}$
$E_{y}=\frac{\partial H_{z}}{\partial x}\left[\frac{\mathrm{j} \omega \mu}{h^{2}}\right]$
The various components of electric and magnetic field strength in equ (35), (38), (40), (42) is expressed interms of $E_{z} \& H_{z}$.

There will be z component either in E or H otherwise all the components should be zero.

In general both the $E_{z} \& H_{z}$ may nor present at the same time the solutions are divided into two cases.

Case (i):

If E_{Z} is present and $H_{Z}=0$, then the wave is called transverse magnetic wave or
TM wave or \mathbf{E} wave because the magnetic field strength is completely transverse to the direction of propagation z .

Case (ii):
If H_{z} is present and $E_{z}=0$, then the wave is called transverse electric wave or TE wave or H wave, because the electric field strength is completely transverse to the direction of propagation.

Case (iii):
Transverse Magnetic Waves or TEM waves are waves that contain neither E_{z} or H_{z}. Both the electric field and magnetic field components are transverse to the direction of propagation, z -direction.

TRANSMISSION OF TRANSVERSE ELECTRIC WAVES BETWEEN

PARALLEL PLANES [$\left.E_{7}=0\right]$

The general field equations of equation(35), (38), (40), (42) for $E_{z}=0$ is given by,
$H_{x}=\frac{-\gamma}{h^{2}} \frac{\partial H_{Z}}{\partial x}$
$H_{y}=\frac{-\mathrm{j} \omega \varepsilon}{h^{2}} \frac{\partial E_{z}}{\partial x}=0$
$E_{x}=\frac{-\gamma}{h^{2}}\left(\frac{\partial E_{z}}{\partial x}\right)=0$
$E_{y}=\frac{\partial H_{z}}{\partial x}\left[\frac{\mathrm{j} \omega \mu}{h^{2}}\right]$
The field components E_{x} and H_{y} are zero.
The field components H_{x}, E_{y} and H_{z} are to determined.

Fig: 4.1.2 Fields in TE waves (H-waves)
In the above Fig 4.1.2, $E_{x}=E_{z}=0$ and the electric field E_{y} is made wholly transverse to the direction of propagation z .

The magnetic field components H_{x} and H_{z}, but $H_{y}=0$. The wave is called as transverse electric wave or H -wave.

The wave equation for the field component E_{y} can be written as,
From equ (25),
$\frac{\partial^{2} E}{\partial x^{2}}+\gamma^{2} \mathrm{E}=-\omega^{2} \mu \varepsilon \mathrm{E}$
$\frac{\partial^{2} E_{y}}{\partial x^{2}}+\gamma^{2} E_{y}=-\omega^{2} \mu \varepsilon E_{y}$
KNGINEAR
$\frac{\partial^{2} E_{y}}{\partial x^{2}}+\gamma^{2} E_{y}+\omega^{2} \mu \varepsilon E_{y}=0$
$\frac{\partial^{2} E_{y}}{\partial x^{2}}+\left(\gamma^{2}+\omega^{2} \mu \varepsilon\right) E_{y}=0$
$\omega^{2} \mu \varepsilon+\gamma^{2}=h^{2}$
$\frac{\partial^{2} E_{y}}{\partial x^{2}}+h^{2} E_{y}=0$
Let $\quad E_{y}=E_{y o} e^{-\gamma z}$
Equ (1) is a second order differential equation and the solution of this equation is given by,
$E_{y o}=C_{1} \sinh +C_{2} \cosh \mathrm{x}$
Where C_{1} and C_{2} are arbitrary constants.
If E_{y} is expressed in time and direction $E_{y}=E_{y o} e^{-\gamma z}$, then solution becomes
$E_{y}=\left[C_{1} \sin \mathrm{hx}+C_{2} \cosh \mathrm{x}\right] e^{-\gamma z}$
The tangential component of E is zero at the surface of the conductors for all values of Z .
i. $\quad E_{y}=0$ at $\mathrm{x}=0$
ii. $\quad E_{y}=0$ at $\mathrm{x}=\mathrm{a}$

These are the boundary conditions to be applied.
Applying the boundary conditions $E_{y}=0$ at $\mathrm{x}=0$ in equ (3)
$0=\left[C_{1} \sin \mathrm{~h}(0)+C_{2} \cosh (0)\right] e^{-\gamma z}$

$$
\begin{equation*}
C_{2}=0 \tag{4}
\end{equation*}
$$

Sub equ (4) in equ (3),
$E_{y}=C_{1} \sin \mathrm{hx} e^{-\gamma z}$
Applying the boundary conditions $E_{y}=0$ at $\mathrm{x}=\mathrm{a}$ in equ (5)
$0=C_{1} \sin$ ha $e^{-\gamma z}$
$\sin \mathrm{ha}=0$
ha $=\sin ^{-1} 0$
$h a=m \pi$
$\mathrm{h}=\frac{\mathrm{m} \pi}{a}$ where $\mathrm{m}=1,2,3 \ldots \ldots$, ch $\mathrm{m}=\mathrm{m}$
Sub ' h ' value in equ (5),
$E_{y}=C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) \times e^{-\gamma z}$
Sub E_{y} in equ (42),
$E_{y}=\frac{\partial H_{z}}{\partial x}\left[\frac{\left.\mathrm{j} \frac{\mu}{h^{2}}\right]}{}\right.$
$\frac{\partial H_{z}}{\partial x}=E_{y} \cdot \frac{h^{2}}{\mathrm{j} \omega \mu}$
$H_{z}=\int E_{y} \cdot \frac{h^{2}}{\mathrm{j} \omega \mu} \cdot \mathrm{dx}$
$H_{z}=\int E_{y} \cdot \frac{\left(\frac{\mathrm{~m} \pi}{a}\right)^{2}}{\mathrm{j} \omega \mu} \cdot \mathrm{dx}$
$H_{z}=\left(\frac{\mathrm{m} \pi}{a}\right)^{2} \cdot \frac{1}{\mathrm{j} \omega \mu} \int E_{y} \cdot \mathrm{dx}$
$H_{z}=\left(\frac{\mathrm{m} \pi}{a}\right)^{2} \cdot \frac{1}{\mathrm{j} \omega \mu} \int C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) \mathrm{x} e^{-\gamma Z} \cdot \mathrm{dx}$
$H_{Z}=\left(\frac{\mathrm{m} \pi}{a}\right)^{2} \cdot \frac{-1}{\mathrm{j} \omega \mu} \cdot C_{1} \frac{\cos \left(\frac{\mathrm{~m} \pi}{a}\right) x}{\left(\frac{\mathrm{~m} \pi}{a}\right)} \cdot e^{-\gamma Z}$
$H_{z}=\frac{-1}{\mathrm{j} \omega \mu}\left(\frac{\mathrm{m} \pi}{a}\right) C_{1} \cos \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\gamma z}$
Sub equ (8) in equ (35),
$H_{x}=\frac{-\gamma}{h^{2}} \frac{\partial H_{z}}{\partial x}$
$H_{x}=\frac{-\gamma}{h^{2}} \frac{\partial}{\partial x}\left(\frac{-1}{\mathrm{j} \omega \mu}\left(\frac{\mathrm{m} \pi}{a}\right) C_{1} \cos \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\gamma z}\right)$
$\cos a x=(-\sin a x) a$
$H_{x}=\frac{-\gamma}{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}} \frac{-1}{\mathrm{j} \omega \mu}\left(\frac{\mathrm{m} \pi}{a}\right) C_{1}\left(-\sin \left(\frac{\mathrm{m} \pi}{a}\right) x\right) \cdot \frac{\mathrm{m} \pi}{a} e^{-\gamma z}$
$H_{x}=\frac{-\gamma}{\mathrm{j} \omega \mu} C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\gamma z}$
Each value of m specifies a particular field of configuration or mode and is designated as $T E_{m o}$ mode.

The second subscript refers to another factor which varies with y , which is found in rectangular waveguides.

The smallest value of $\mathrm{m}=1$, because $\mathrm{m}=0$ makes all fields identically zero.
Therefore lowest order mode is $T E_{10}$. This is also called as the dominant mode in TE waves.

The propagation constant $\gamma=\alpha+\mathrm{j} \beta$. If the wave propagates without attenuation , $\alpha=0$ then $\gamma=\mathrm{j} \beta$.
sub $\gamma=\mathrm{j} \beta$ in equation (7), (8), (9),
$E_{y}=C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) \times e^{-\mathrm{j} \beta z}$
$H_{z}=\frac{-1}{\mathrm{j} \omega \mu}\left(\frac{\mathrm{m} \pi}{a}\right) C_{1} \cos \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\mathrm{j} \beta z}$
$H_{x}=\frac{-\mathrm{j} \beta}{\mathrm{j} \omega \mu} C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\mathrm{j} \beta z}$
$H_{x}=\frac{-\beta}{\omega \mu} C_{1} \sin \left(\frac{\mathrm{~m} \pi}{a}\right) x e^{-\mathrm{j} \beta z}$
The above equations represent the field strength of TE waves between parallel conducting planes.

TRANSMISSION OF TRANSVERSE ELECTROMAGNETIC WAVE

BETWEEN PARALLEL PLANES (TEM WAVES)

Consider the electric field is totally along the x-axis (i.e., $E_{x}=E_{y}=0$) and the magnetic field along the y-axis. (i.e., $H_{x}=H_{y}=0$) shown in Fig 4.1.3.

Both the electric and magnetic field components are transverse to the direction of propagation on z , and the wave is said transverse electromagnetic wave or principal wave.

TEM wave is a special case of transverse magnetic wave in which the electric field E_{z} along the direction of propagation is zero.

The condition on E_{z} is obtained if m is made zero in TE waves.
TEM is also called as Principal wave.

Fig: 4.1.3 Transverse Electromagnetic field vectors
Accordingly the TEM wave becomes a TM waves with $\mathrm{m}=0$, the field equations of TM waves from equation are:
$H_{y}=C_{4} \cos \left(\frac{m \pi}{a}\right) x e^{-j \beta z}$
$E_{x}=\frac{\beta}{\omega \varepsilon} C_{4} \cos \left(\frac{m \pi}{a}\right) x e^{-j \beta z}$
$E_{y}=\frac{j m \pi}{\omega \varepsilon a} C_{4} \cos \left(\frac{m \pi}{a}\right) x e^{-j \beta z}$
Putting $\mathrm{m}=0$ in the above equations of TM waves, the field equations of TEM waves are obtained
$H_{y}=C_{4} x e^{-j \beta z}$
$E_{x}=\frac{\beta}{\omega \varepsilon} C_{4} e^{-j \beta z}$
$E_{y}=0$
These fields are not only transverse, but they are constant in amplitude across a cross section normal to the direction of propagation.

Characteristics of TEM waves:

For $m=0$ and dielectric is air.

i. Propagation Constant

$\gamma=\sqrt{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega^{2} \mu_{o} \varepsilon_{o}}$
$\gamma=\sqrt{-\omega^{2} \mu_{o} \varepsilon_{o}}$
$\gamma=j \omega \sqrt{\mu_{o} \varepsilon_{o}}$
$\gamma=\alpha+\mathrm{j} \beta$
$\gamma=\mathrm{j} \omega \sqrt{\mu_{o} \varepsilon_{o}}$
Equating real and imaginary parts,
$\alpha=0$
$\beta=\omega \sqrt{\mu_{o} \varepsilon_{o}}$

ii. Guided Wavelength

$\lambda_{g}=\frac{2 \pi}{\beta}$
$\lambda_{g}=\frac{2 \pi}{\omega \sqrt{\mu_{o} \varepsilon_{o}}}$

$$
\begin{gather*}
\omega=2 \pi f \\
v_{o}=\frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}} \tag{6}
\end{gather*}
$$

$\lambda_{g}=\frac{2 \pi v_{o}}{2 \pi f}=\lambda=$ Wavelength of free space

iii. Velocity of Propagation

$v=\frac{\omega}{\beta}=\frac{\omega}{\omega \sqrt{\mu_{o} \varepsilon_{o}}}=\frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}}=\mathrm{C}$
Velocity of TEM is independent of frequency and has a familiar free space value, $\mathrm{C}=3 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$.
iv. From equ (7), cut off frequency is given by,
$f_{c}=\frac{\mathrm{m}}{2 a \sqrt{\mu_{o} \varepsilon_{o}}}$
For $m=0$
$f_{c}=0$
Cut off frequency of the TEM waves is zero, indicating all the frequencies down to zero can propagate along the guide.
v. The ratio of the amplitudes of E to H between planes is defined as characteristic wave impedance given by
$\frac{E_{x}}{H_{y}}=\frac{\beta}{\omega \varepsilon}=\frac{\omega \sqrt{\mu_{o} \varepsilon_{o}}}{\omega \varepsilon_{o}}=\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}=\eta$
η is the intrinsic impedance of the dielectric medium existing between the planes.
$E_{x}=\eta H_{y}$
vi. The total power propagating in the Z-direction is calculated using Poynting theorem
$\gamma=\iint E X H \mathrm{~d} x \mathrm{dy}$
$\mathrm{P}=\int_{x=-\frac{a}{2}}^{x=+\frac{a}{2}} \int_{y=0}^{1}\left(\frac{E_{x}}{\sqrt{2}}\right)\left(\frac{H_{y}}{\sqrt{2}}\right) \mathrm{d} x$ dy for 1 meter width along y direction
$\mathrm{P}=\frac{1}{2} E_{x} H_{y}[x]_{-\frac{a}{2}}^{+\frac{a}{2}}[y]_{0}^{1}$
$\mathrm{P}=\frac{1}{2} E_{x} H_{y} \mathrm{a}$

$$
E_{x}=\eta H_{y}
$$

$\mathrm{P}=\frac{1}{2}\left(\eta H_{y}\right) H_{y} \mathrm{a}$
$\mathrm{P}=\frac{1}{2} \mathrm{\eta}$ a $H_{y}{ }^{2}$ watts / meter of width.

CHARACTERISTICS OF TE AND TM WAVES:

The characteristics of TE and TM waves cab be studied by analyzing propagation constant γ.
$h^{2}=\omega^{2} \mu \varepsilon+\gamma^{2}$
$\gamma^{2}=h^{2}-\omega^{2} \mu \varepsilon$
$\gamma=\sqrt{h^{2}-\omega^{2} \mu \varepsilon}$

i. Cut-off frequency $\left(f_{\boldsymbol{c}}\right)$:

Sub h $=\frac{\mathrm{m} \pi}{a}$ in equ (1),
$\gamma=\sqrt{\left(\frac{m \pi}{a}\right)^{2}-\omega^{2} \mu \varepsilon}=\alpha+\mathrm{j} \beta$
When $\omega^{2} \mu \varepsilon>\left(\frac{\mathrm{m} \pi}{a}\right)^{2}$. (i.e) at higher frequencies, γ becomes imaginary equal equal to $j \beta$. Phase change for the wave occurs and hence the wave propagates. At lower frequencies, $\omega^{2} \mu \varepsilon<\left(\frac{m \pi}{a}\right)^{2}$ so that ' γ ' becomes real equal to the attenuation constant ' α ' and ' β ' is zero. The wave completely attenuated and no propagation takes place.

As the frequency is decreased a critical frequency ω_{c} is reached when $\omega^{2} \mu \varepsilon$ $=\left(\frac{\mathrm{m} \pi}{a}\right)^{2}$.

The frequency at which wave motion ceases or the frequency above which wave motion exits is called the cutoff frequency of the guide.

The system acts as a high pass filter with a cutoff frequency ' f_{c} ' and is defined as the frequency at which the attenuation condition changes to the propagation condition.

At $f=f_{c}, \gamma=0$,
From equ (2),
$\sqrt{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega_{c}^{2} \mu \varepsilon}=0$
$\omega_{c}{ }^{2} \mu \varepsilon=\left(\frac{\mathrm{m} \pi}{a}\right)^{2}$
$\omega_{c}^{2}=\frac{1}{\mu \varepsilon}\left(\frac{\mathrm{~m} \pi}{a}\right)^{2}$
$\omega_{c}=\sqrt{\frac{1}{\mu \varepsilon}}\left(\frac{\mathrm{~m} \pi}{a}\right)$
$f_{c}=\frac{1}{2 \pi \sqrt{\mu \varepsilon}} \cdot \frac{m \pi}{a}$
$f_{c}=\frac{\mathrm{m}}{2 a \sqrt{\mu \bar{\varepsilon}}}$
Cutoff frequency is defined as the frequency at which propagation constant
Cutoff frequency is defined as the fre
changes from being real to imaginary.

$$
\omega_{c}=2 \pi f_{c}
$$

$$
\begin{aligned}
& \gamma=\sqrt{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega^{2} \mu \varepsilon} \\
& \gamma=\frac{\mathrm{m} \pi}{a} \sqrt{1-\frac{\omega^{2} \mu \varepsilon}{\left(\frac{\mathrm{~m} \pi}{a}\right)^{2}}} \\
& \gamma=\frac{\mathrm{m} \pi}{a} \sqrt{1-\frac{\omega^{2} \mu \varepsilon}{\omega_{c}{ }^{2} \mu \varepsilon}}
\end{aligned}
$$

$$
\begin{equation*}
\gamma=\frac{\mathrm{m} \pi}{a} \sqrt{1-\frac{f^{2}}{f_{c}{ }^{2}}} \tag{4}
\end{equation*}
$$

$\gamma=\omega_{c} \sqrt{\mu \varepsilon} \sqrt{1-\frac{f^{2}}{f_{c}{ }^{2}}}$

$$
\frac{m \pi}{a}=\omega_{c} \sqrt{\mu \varepsilon}
$$

For frequencies below cutoff where $f<f_{c}$ and γ is real, $\gamma=\alpha, \beta=0$.
At frequencies above cutoff, $\boldsymbol{f}>\boldsymbol{f}_{\boldsymbol{c}}, \gamma$ is imaginary and $\alpha=0$. Thus propagation will occur and

$$
\gamma=j \beta
$$

From equ (4),

$$
\begin{aligned}
& \mathrm{j} \beta=\frac{\mathrm{m} \pi}{a} \sqrt{1-\frac{f^{2}}{f_{c}^{2}}} \\
& \mathrm{j} \beta=\frac{\mathrm{m} \pi}{a} \sqrt{-1\left(\frac{f^{2}}{f_{c}^{2}}-1\right)} \\
& \mathrm{j} \beta=j \frac{\mathrm{~m} \pi}{a} \sqrt{\left(\frac{f^{2}}{f_{c}^{2}}-1\right)}
\end{aligned}
$$

$$
\frac{\mathrm{m} \pi}{a}=\omega_{c} \sqrt{\mu \varepsilon}
$$

$$
\mathrm{j} \beta=j \omega_{c} \sqrt{\mu \varepsilon} \sqrt{\left(\frac{f^{2}}{f_{c}^{2}}-1\right)}
$$

$$
\beta=\omega_{c} \sqrt{\mu \varepsilon} \sqrt{\left(\frac{f^{2}}{f_{c}^{2}}-1\right)}
$$

$$
\beta=\omega_{c} \sqrt{\mu \varepsilon} \sqrt{\left(\frac{f^{2}-f_{c}^{2}}{f_{c}^{2}}\right)}
$$

$$
\beta=\frac{\omega_{c} \sqrt{\mu \varepsilon}}{f_{c}} \sqrt{\left(f^{2}-f_{c}^{2}\right)}
$$

$$
\omega_{c}=2 \pi f_{c}
$$

$$
\beta=\frac{2 \pi f_{c} \sqrt{\mu \varepsilon}}{f_{c}} \sqrt{\left(f^{2}-f_{c}^{2}\right)}
$$

$$
\begin{equation*}
\beta=2 \pi \sqrt{\mu \varepsilon} \sqrt{\left(f^{2}-f_{c}^{2}\right)} \tag{7}
\end{equation*}
$$

(or)

$$
\gamma=\mathrm{j} \beta=\sqrt{\left(\frac{\mathrm{m} \pi}{a}\right)^{2}-\omega^{2} \mu \varepsilon}
$$

$$
\begin{aligned}
& j \beta=\sqrt{-\left[\omega^{2} \mu \varepsilon-\left(\frac{m \pi}{a}\right)^{2}\right]} \\
& j \beta=j \sqrt{\omega^{2} \mu \varepsilon-\left(\frac{m \pi}{a}\right)^{2}} \\
& \beta=\sqrt{\omega^{2} \mu \varepsilon-\left(\frac{m \pi}{a}\right)^{2}}
\end{aligned}
$$

from equ (3),
Cut off frequency $f_{c}=\frac{\mathrm{m}}{2 a \sqrt{\mu \varepsilon}}$

$$
\begin{equation*}
f_{c}=\frac{\mathrm{m} \mathrm{v}}{2 a .} \tag{8}
\end{equation*}
$$

$$
v=\frac{1}{\sqrt{\mu \varepsilon}}
$$

v is the velocity of propagation $=3 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$

ii. Wavelength (λ) / Guided Wavelength $\left(\lambda_{g}\right)$:

The distance travelled by a wave to under go a phase shift of 2π radians is called wavelength. It is the wavelength in the direction of propagation and hence also called as guided wavelength.

$$
\begin{align*}
& \lambda=\frac{2 \pi}{\beta}=\lambda_{g} \\
& \lambda_{g}=\frac{2 \pi}{\sqrt{\omega^{2} \mu \varepsilon-\left(\frac{\mathrm{m} \pi}{a}\right)^{2}}} \tag{9}
\end{align*}
$$

iii. Cut off Wavelength $\left(\boldsymbol{\lambda}_{\boldsymbol{c}}\right)$:

Wavelength at cutoff frequency is called as cutoff wavelength.

$$
\begin{align*}
& \lambda_{c}=\frac{v}{f_{c}} \\
& \lambda_{c}=\frac{v}{\frac{\mathrm{mv}}{2 a .}} \\
& \lambda_{c}=\frac{2 a}{m} \tag{10}
\end{align*}
$$

From equ (9),

$$
\lambda_{g}=\frac{1}{f \sqrt{\mu \varepsilon} \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}}
$$

$$
\lambda_{g}=\frac{v}{f \sqrt{1-\frac{f_{c}^{2}}{f^{2}}}}
$$

$$
\lambda=\frac{v}{f}
$$

$$
\lambda_{g}=\frac{\lambda}{\sqrt{1-\frac{f_{c}^{2}}{f^{2}}}}
$$

$$
\begin{aligned}
f & =\frac{v}{\lambda} \\
f_{c} & =\frac{v}{\lambda_{c}}
\end{aligned}
$$

$\lambda_{g}=\frac{\lambda}{\sqrt{1-\left(\frac{\frac{v}{\lambda_{c}}}{\frac{v}{\lambda}}\right)^{2}}}$
$\lambda_{g}=\frac{\lambda}{\sqrt{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}}$

Squaring on both sides,
$\lambda_{g}{ }^{2}=\frac{\lambda^{2}}{1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}}$
$1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}=\frac{\lambda^{2}}{\lambda_{g}^{2}}$
$1-\left(\frac{\lambda}{\lambda_{c}}\right)^{2}=\left(\frac{\lambda}{\lambda_{g}}\right)^{2}$
$1=\left(\frac{\lambda}{\lambda_{g}}\right)^{2}+\left(\frac{\lambda}{\lambda_{c}}\right)^{2}$
$1=\lambda^{2}\left[\frac{1}{\lambda_{g}{ }^{2}}+\frac{1}{\lambda_{c}{ }^{2}}\right]$
$\frac{1}{\lambda^{2}}=\frac{1}{\lambda_{g}{ }^{2}}+\frac{1}{\lambda_{c}{ }^{2}}$
λ-Free space wavelength

