4.1 GENERAL WAVE BEHAVIOUR ALONG UNIFORM PARALLEL PLANES (or) APPLICATION OF RESTICTIONS TO MAXWELL'S EQUATION (or) WAVES BETWEEN PARALLEL PLANES OF PERFECT CONDUCTORS:

Fig: 4.1.1 Parallel conducting planes

In Fig 4.1.1 consider an electromagnetic wave propagate between a pair of parallel perfectly conducting planes of infinite incident in the plane of Y and Z direction the Maxwell equation for long conducting rectangular region is given by.

$$\nabla x H = j\omega \varepsilon E$$

$$\nabla x H = j\omega \varepsilon E$$

$$(1)$$

$$\nabla x E = -j\omega \mu H$$

$$(2)$$

$$\nabla^{2} E = \gamma^{2} E$$

$$(3)$$

$$\nabla^{2} H = \gamma^{2} H$$

$$(4)$$
Where,

$$\gamma^2 = -\omega^2 \mu \epsilon$$

For non conducting in medium

$$\nabla^2 \mathbf{E} = -\omega^2 \mu \,\varepsilon \,\mathbf{E} \qquad \dots \dots \dots (5)$$
$$\nabla^2 \mathbf{H} = -\omega^2 \mu \,\varepsilon \,\mathbf{H} \qquad \dots \dots \dots (6)$$

It can be written as,

$$\frac{\partial^{2} E}{\partial x^{2}} + \frac{\partial^{2} E}{\partial y^{2}} + \frac{\partial^{2} E}{\partial z^{2}} = -\omega^{2} \mu \varepsilon E \qquad \dots \dots (7)$$
$$\frac{\partial^{2} H}{\partial x^{2}} + \frac{\partial^{2} H}{\partial y^{2}} + \frac{\partial^{2} H}{\partial z^{2}} = -\omega^{2} \mu \varepsilon H \qquad \dots \dots (8)$$

From the properties of vector algebra, NEER

$$\nabla \mathbf{x} \mathbf{H} = \begin{vmatrix} \overrightarrow{a_x} & \overrightarrow{a_y} & \overrightarrow{a_z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ H_x & H_y & H_z \end{vmatrix}$$

$$= \underset{a_x}{\rightarrow} \left[\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \right] \xrightarrow{} \underset{a_y}{\rightarrow} \left[\frac{\partial H_z}{\partial x} - \frac{\partial H_x}{\partial z} \right] \xrightarrow{+} \underset{a_z}{\rightarrow} \left[\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right] \xrightarrow{} \underset{\dots}{\dots} (9)$$
Equ (1) can be written as,

$$\nabla \mathbf{x} \mathbf{H} = \mathbf{j} \omega \varepsilon \left[E_x \underset{a_x}{\rightarrow} + E_y \underset{a_y}{\rightarrow} + E_z \underset{a_z}{\rightarrow} \right]$$

$$\nabla \mathbf{x} \mathbf{H} = \mathbf{j} \omega \varepsilon E_x \underset{a_x}{\rightarrow} + \mathbf{j} \omega \varepsilon E_y \underset{a_y}{\rightarrow} + \mathbf{j} \omega \varepsilon E_z \underset{a_z}{\rightarrow} \dots \dots (10)$$
Equate equ (9) and (10),

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_z}{\partial z} = \mathbf{j} \omega \varepsilon E_x \underset{\text{BSERVE OPTIMIZE OUTSPREND}{\dots \dots (12)}$$

$$\nabla \mathbf{x} \mathbf{E} = \begin{vmatrix} \overrightarrow{a_x} & \overrightarrow{a_y} & \overrightarrow{a_z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial y} \\ E_x & E_y & E_z \end{vmatrix}$$

EC8651 TRANSMISSION LINES AND RF SYSTEMS

$$= \underset{a_x}{\rightarrow} \left[\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \right] - \underset{a_y}{\rightarrow} \left[\frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} \right] + \underset{a_z}{\rightarrow} \left[\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right] \quad \dots \dots (14)$$

Equ (2) can be written as,

Diff w.r.to 'z'

$$\frac{\partial E_{y}}{\partial z} = E_{y}^{o} e^{-\gamma z} (-\gamma)$$

$$\frac{\partial E_{y}}{\partial z} = -\gamma E_{y}^{o} e^{-\gamma z}$$

$$\frac{\partial E_{y}}{\partial z} = -\gamma E_{y} \qquad \dots \dots (23)$$

$$\frac{\partial E_{x}}{\partial z} = -\gamma E_{x} \qquad \dots \dots (24)$$
There is no attenuation in y direction. Hence the definition is the experimentary of the exper

rivative of y is zero.

Let
$$E = E_o e^{-\gamma z}$$

Diff w. r. to 'z'
 $\frac{\partial E}{\partial z} = E_o e^{-\gamma z} (-\gamma)$
Again diff w. r. to 'z'
 $\frac{\partial^2 E}{\partial z^2} = E_o e^{-\gamma z} (-\gamma) (-\gamma)$
 $\frac{\partial^2 E}{\partial z^2} = E_o e^{-\gamma z} \gamma^2$
 $\frac{\partial^2 E}{\partial z^2} = \gamma^2 E$
From equ (7),
 $\frac{\partial^2 E}{\partial x^2} + 0 + \frac{\partial^2 E}{\partial z^2} = -\omega^2 \mu \varepsilon E$
From equ (8),
 $\frac{\partial^2 H}{\partial x^2} + 0 + \frac{\partial^2 H}{\partial z^2} = -\omega^2 \mu \varepsilon E$
From equ (8),
 $\frac{\partial^2 H}{\partial x^2} + 0 + \frac{\partial^2 H}{\partial z^2} = -\omega^2 \mu \varepsilon E$
From equ (8),
 $\frac{\partial^2 H}{\partial x^2} + \gamma^2 H = -\omega^2 \mu \varepsilon H$ (25)
Sub equ (20) & (21) in (11), (12) & (13)
From equ (11),
 $-(-\gamma H_y) = j\omega \varepsilon E_x$ (27)
From equ (12),

$$-\gamma H_{x} - \frac{\partial H_{x}}{\partial x} = j\omega \varepsilon E_{y} \qquad \dots \dots (28)$$
From equ (13),

$$\frac{\partial H_{y}}{\partial x} = j\omega \varepsilon E_{z} \qquad \dots \dots (29)$$
Sub equ (23) & (24) in (16), (17) & (18)
From equ (16),

$$-(-\gamma E_{y}) = -j\omega \mu H_{x}$$
From equ (17),

$$(-\gamma E_{x}) - \frac{\partial E_{x}}{\partial x} = -j\omega \mu H_{y}$$
From equ (18),

$$\frac{\partial E_{y}}{\partial x} = -j\omega \mu H_{z}$$
From equ (18),

$$\frac{\partial E_{y}}{\partial x} = -j\omega \mu H_{z}$$
From equ (20),

$$H_{x} = \frac{-\gamma E_{y}}{j\omega \mu}$$
From equ (28),

$$E_{y} = \frac{-1}{j\omega \epsilon} \left(\gamma H_{x} + \frac{\partial H_{z}}{\partial x}\right)$$
Sub equ (34) in equ (33)

$$H_{x} = \frac{-\gamma}{j\omega \omega^{2} \mu \varepsilon} \left(\gamma H_{x} + \frac{\partial H_{z}}{\partial x}\right)$$

$$\int \mathbf{DPTIMIZE OUTSPREAD}$$

$$H_{x} = \frac{-\gamma}{\omega^{2} \mu \varepsilon} \left(\gamma H_{x} + \frac{\partial H_{z}}{\partial x}\right)$$

$$H_{x} = \frac{-\gamma}{\omega^{2} \mu \varepsilon} \left(\gamma H_{x} + \frac{\partial H_{z}}{\partial x}\right)$$

$$H_{x} = \frac{-\gamma}{\omega^{2} \mu \varepsilon} \left(\gamma H_{x} + \frac{\partial H_{z}}{\partial x}\right)$$

$$H_{x}\left(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon}\right) = \frac{-y}{\omega^{2}\mu\varepsilon}\frac{\partial H_{x}}{\partial x}$$

$$H_{x} = \frac{\frac{-y}{\omega^{2}\mu\varepsilon}\frac{\partial H_{x}}{\partial x}}{\left(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon}\right)}$$

$$H_{x} = \frac{-y}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}$$

$$H_{x} = \frac{(-y)}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}$$

$$H_{x} = \left(\frac{-y}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}\right)$$

$$H_{x} = \frac{(-y)}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}\right)$$

$$H_{x} = \left(\frac{-y}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}\right)$$

$$H_{x} = \frac{(-y)}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}\right)$$

$$H_{x} = \frac{(-y)}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}$$

$$H_{x} = \frac{(-y)}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}\right)$$

$$H_{x} = \frac{(-y)}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}$$

$$H_{x} = \frac{(-y)}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}\right)$$

$$H_{x} = \frac{(-y)}{(1+\frac{y^{2}}{\omega^{2}\mu\varepsilon})}$$

$$H_{x}$$

$$H_{y} + \frac{\omega^{2} \mu \varepsilon H_{y}}{\gamma^{2}} = \frac{-j\omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}$$

$$H_{y} \left(1 + \frac{\omega^{2} \mu \varepsilon}{\gamma^{2}}\right) = \frac{-j\omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}$$

$$H_{y} \left(1 + \frac{\omega^{2} \mu \varepsilon}{\gamma^{2}}\right) = \frac{-j\omega \varepsilon}{\gamma^{2}} \frac{\partial E_{z}}{\partial x}$$

$$H_{y} = \frac{-j\omega \varepsilon}{\gamma^{2} + \omega^{2} \mu \varepsilon}$$

$$H_{y} = \frac{-j\omega \varepsilon}{\gamma^{2} + \omega^{2} \mu \varepsilon} \frac{\partial E_{z}}{\partial x}$$

$$H_{y} = \frac{-j\omega \varepsilon}{\gamma^{2} + \omega^{2} \mu \varepsilon} \frac{\partial E_{z}}{\partial x}$$

$$H_{y} = \frac{-j\omega \varepsilon}{\gamma^{2} + \omega^{2} \mu \varepsilon} \frac{\partial E_{z}}{\partial x}$$

$$H_{y} = \frac{-j\omega \varepsilon}{\gamma^{2} + \omega^{2} \mu \varepsilon} \frac{\partial E_{z}}{\partial x}$$

$$H_{y} = \frac{-j\omega \varepsilon}{\gamma^{2} + \omega^{2} \mu \varepsilon}$$

$$H_{y} = \frac{j\omega \varepsilon}{\gamma} \frac{E_{x}}{\gamma}$$

$$H_{z} + \frac{\partial E_{z}}{\partial x} = j\omega \mu \left(\frac{l\omega \varepsilon}{\gamma}\right)$$

$$H_{z} + \frac{\partial E_{z}}{\partial x} = \frac{-\omega^{2} \mu \varepsilon E_{x}}{\gamma}$$

$$H_{z} + \frac{\partial E_{z}}{\omega} = \frac{-\omega^{2} \mu \varepsilon E_{x}}{\gamma}$$

$$E_{x} \left(\gamma + \frac{\omega^{2} \mu \varepsilon}{\gamma}\right) = -\frac{\partial E_{x}}{\partial x}$$

$$E_{x} \left(\gamma + \frac{\omega^{2} \mu \varepsilon}{\gamma}\right) = -\frac{\partial E_{x}}{\partial x}$$

$$E_{x} = \frac{-\frac{\partial E_{x}}{h^{2}}}{\frac{P}{r}}$$

$$E_{x} = \frac{-\gamma}{h^{2}} \left(\frac{\partial E_{x}}{\partial x} \right) \qquad \dots (40)$$
To find E_{y} :
Solve equ (28) & (30),
From equ (30),
 $\gamma E_{y} = -j\omega \mu H_{x}$

$$H_{x} = \frac{-\gamma E_{y}}{j\omega \mu} \qquad \dots (41)$$
Sub equ (41) in equ (28),
$$-\gamma H_{x} - \frac{\partial H_{z}}{\partial x} = j\omega \varepsilon E_{y}$$

$$-\gamma \left(\frac{-\gamma E_{y}}{j\omega \mu} \right) - \frac{\partial H_{z}}{\partial x} = j\omega \varepsilon E_{y}$$

$$\frac{\gamma^{2} E_{y}}{j\omega \mu} - j\omega \varepsilon E_{y} = \frac{\partial H_{z}}{\partial x}$$

$$E_{y} \left[\frac{\gamma^{2}}{j\omega \mu} - j\omega \varepsilon \right] = \frac{\partial H_{z}}{\partial x}$$

$$E_{y} \left[\frac{h^{2}}{j\omega \mu} \right] = \frac{\partial H_{z}}{\partial x}$$

$$DSSERVE OUTSPREAD$$

The various components of electric and magnetic field strength in equ (35), (38), (40), (42) is expressed in erms of $E_z \& H_z$.

There will be z component either in E or H otherwise all the components should be zero.

In general both the $E_z \& H_z$ may nor present at the same time the solutions are divided into two cases.

Case (i):

If E_z is present and $H_z=0$, then the wave is called **transverse magnetic wave or TM wave or E wave** because the magnetic field strength is completely transverse to the direction of propagation z.

Case (ii):

If H_z is present and $E_z = 0$, then the wave is called **transverse electric wave or TE wave or H wave,** because the electric field strength is completely transverse to the direction of propagation. GINEE

Case (iii):

Transverse Magnetic Waves or TEM waves are waves that contain neither E_z or H_z . Both the electric field and magnetic field components are transverse to the direction of propagation, z-direction.

OBSERVE OPTIMIZE OUTSPREAD

TRANSMISSION OF TRANSVERSE ELECTRIC WAVES BETWEEN

PARALLEL PLANES $[E_z=0]$

The general field equations of equation(35), (38), (40), (42) for $E_z = 0$ is given by,

$$H_{x} = \frac{-Y}{h^{2}} \frac{\partial H_{z}}{\partial x}$$

$$H_{y} = \frac{-j\omega \varepsilon}{h^{2}} \frac{\partial E_{y}}{\partial x} = 0$$

$$E_{x} = \frac{-Y}{h^{2}} \left(\frac{\partial E_{z}}{\partial x} \right) = 0$$

$$E_{y} = \frac{\partial H_{z}}{\partial x} \left[\frac{j\omega \mu}{h^{2}} \right]$$
The field components E_{x} and H_{y} are zero.
The field components H_{x} , E_{y} and H_{z} are to determined.

$$\frac{x}{a}$$

$$H_{x}$$

$$H_{x}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

$$H_{z}$$

$$H_{y}$$

$$H_{z}$$

Fig: 4.1.2 Fields in TE waves (H-waves)

In the above Fig 4.1.2, $E_x = E_z = 0$ and the electric field E_y is made wholly transverse to the direction of propagation z.

The magnetic field components H_x and H_z , but $H_y = 0$. The wave is called as transverse electric wave or H-wave.

The wave equation for the field component E_{y} can be written as,

From equ (25),

$$\frac{\partial^{2} E}{\partial x^{2}} + \gamma^{2} E = -\omega^{2} \mu \varepsilon E$$

$$\frac{\partial^{2} E_{y}}{\partial x^{2}} + \gamma^{2} E_{y} = -\omega^{2} \mu \varepsilon E_{y}$$

$$\frac{\partial^{2} E_{y}}{\partial x^{2}} + \gamma^{2} E_{y} + \omega^{2} \mu \varepsilon E_{y} = 0$$

$$\frac{\partial^{2} E_{y}}{\partial x^{2}} + (\gamma^{2} + \omega^{2} \mu \varepsilon) E_{y} = 0$$

$$\omega^{2} \mu \varepsilon + \gamma^{2} = h^{2}$$

$$\frac{\partial^{2} E_{y}}{\partial x^{2}} + h^{2} E_{y} = 0$$

$$(1)$$

$$\text{Let} \quad E_{y} = E_{yo} e^{-\gamma z}$$

Equ (1) is a second order differential equation and the solution of this equation is given by,

.....(2)

 $E_{yo} = C_1 \sin hx + C_2 \cosh x$

Where C_1 and C_2 are arbitrary constants.

If E_y is expressed in time and direction $E_y = E_{yo} e^{-\gamma z}$, then solution becomes

 $E_{\gamma} = [C_1 \sin hx + C_2 \cosh x] e^{-\gamma z} \qquad \dots \dots (3)$

The tangential component of E is zero at the surface of the conductors for all values of Z.

i.
$$E_{v} = 0$$
 at $x = 0$

ii.
$$E_v = 0$$
 at $x = a$

These are the boundary conditions to be applied.

Applying the boundary conditions $E_y = 0$ at x = 0 in equ (3)

 $0 = [C_1 \sin h(0) + C_2 \cosh(0)] e^{-\gamma z}$

 $C_2 = 0$ (4)

Sub equ (4) in equ (3),

$$E_{y} = C_{1} \sin hx \ e^{-\gamma z} \qquad \dots (5)$$
Applying the boundary conditions $E_{y} = 0$ at $x = a$ in equ (5)
 $0 = C_{1} \sin ha \ e^{-\gamma z}$
 $\sin ha = 0$
 $ha = \sin^{-1} 0$
 $ha = m\pi$
 $h = \frac{m\pi}{a}$ where $m = 1, 2, 3$ \dots (7)
Sub 'h' value in equ (5),
 $E_{y} = C_{1} \sin\left(\frac{m\pi}{a}\right) x \ e^{-\gamma z}$
Sub 'h' value in equ (2),
 $E_{y} = \frac{\partial H_{x}}{\partial x} \left[\frac{|\omega \mu|}{h^{2}}\right]$
 $\frac{\partial H_{x}}{\partial x} = E_{y} \cdot \frac{h^{2}}{|\omega \mu|}$ dx
 $H_{z} = \int E_{y} \cdot \frac{m\pi}{|\omega \mu|} \int E_{y} dx$
 $H_{z} = \int E_{y} \cdot \frac{m\pi}{|\omega \mu|} \int C_{4} \sin\left(\frac{m\pi}{a}\right) x \ e^{-\gamma z} dx$
 $H_{z} = \left(\frac{m\pi}{a}\right)^{2} \cdot \frac{\pi}{|\omega \mu|} \cdot C_{1} \frac{\cos\left(\frac{m\pi}{a}\right)x}{\left(\frac{m\pi}{a}\right)} x \ e^{-\gamma z}$
 $H_{z} = \frac{-1}{|\omega \mu|} \left(\frac{m\pi}{a}\right) C_{1} \cos\left(\frac{m\pi}{a}\right) x \ e^{-\gamma z}$ $\dots (8)$

Sub equ (8) in equ (35),

$$H_{\chi} = \frac{-\gamma}{h^2} \frac{\partial H_z}{\partial x}$$
$$H_{\chi} = \frac{-\gamma}{h^2} \frac{\partial}{\partial x} \left(\frac{-1}{j\omega \mu} \left(\frac{m\pi}{a} \right) C_1 \cos\left(\frac{m\pi}{a} \right) x \ e^{-\gamma z} \right)$$

 $\cos ax = (-\sin ax) a$

$$H_{\chi} = \frac{-\gamma}{\left(\frac{m\pi}{a}\right)^{2}} \frac{-1}{j\omega\mu} \left(\frac{m\pi}{a}\right) C_{1} \left(-\sin\left(\frac{m\pi}{a}\right)x\right) \cdot \frac{m\pi}{a} e^{-\gamma z}$$
$$H_{\chi} = \frac{-\gamma}{j\omega\mu} C_{1} \sin\left(\frac{m\pi}{a}\right) x e^{-\gamma z} \qquad \dots \dots (9)$$

Each value of m specifies a particular field of configuration or mode and is designated as TE_{mo} mode.

The second subscript refers to another factor which varies with y, which is found in rectangular waveguides.

The smallest value of m=1, because m=0 makes all fields identically zero.

Therefore lowest order mode is TE_{10} . This is also called as the dominant mode in TE waves.

The propagation constant $\gamma = \alpha + j\beta$. If the wave propagates without attenuation $,\alpha = 0$ then $\gamma = j\beta$.

sub
$$\gamma = j\beta$$
 in equation (7), (8), (9),

$$E_{y} = C_{1} \sin\left(\frac{m\pi}{a}\right) x e^{-j\beta z}$$

$$H_{z} = \frac{-1}{j\omega \mu} \left(\frac{m\pi}{a}\right) C_{1} \cos\left(\frac{m\pi}{a}\right) x e^{-j\beta z}$$

$$H_{x} = \frac{-j\beta}{j\omega \mu} C_{1} \sin\left(\frac{m\pi}{a}\right) x e^{-j\beta z}$$

$$H_{x} = \frac{-\beta}{\omega \mu} C_{1} \sin\left(\frac{m\pi}{a}\right) x e^{-j\beta z}$$

The above equations represent the field strength of TE waves between parallel conducting planes.

TRANSMISSION OF TRANSVERSE ELECTROMAGNETIC WAVE BETWEEN PARALLEL PLANES (TEM WAVES)

Consider the electric field is totally along the x-axis (i.e., $E_x = E_y = 0$) and the magnetic field along the y-axis. (i.e., $H_x = H_y = 0$) shown in Fig 4.1.3.

Both the electric and magnetic field components are transverse to the direction of propagation on z, and the wave is said **transverse electromagnetic wave or principal wave.**

TEM wave is a **special case of transverse magnetic wave** in which the electric field E_z along the direction of propagation is zero.

The condition on E_z is obtained if m is made zero in TE waves.

TEM is also called as **Principal wave.**

Fig: 4.1.3 Transverse Electromagnetic field vectors

Accordingly the TEM wave becomes a TM waves with m=0, the field equations of TM waves from equation are:

$$H_{y} = C_{4} \cos\left(\frac{m\pi}{a}\right) x e^{-j\beta z}$$
$$E_{x} = \frac{\beta}{\omega\varepsilon} C_{4} \cos\left(\frac{m\pi}{a}\right) x e^{-j\beta z}$$
$$E_{y} = \frac{jm\pi}{\omega\varepsilon a} C_{4} \cos\left(\frac{m\pi}{a}\right) x e^{-j\beta z}$$

Putting m=0 in the above equations of TM waves, the field equations of TEM

waves are obtained

$$H_{y} = C_{4} x e^{-j\beta z}$$

$$E_{x} = \frac{\beta}{\omega \varepsilon} C_{4} e^{-j\beta z}$$

$$E_{y} = 0$$

$$(1)$$

These fields are not only transverse, but they are constant in amplitude across a cross section normal to the direction of propagation.

Characteristics of TEM waves: For m = 0 and dielectric is air. i. Propagation Constant $\gamma = \sqrt{\left(\frac{m\pi}{a}\right)^2 - \omega^2 \mu_o \varepsilon_o}$ $\gamma = \sqrt{-\omega^2 \mu_o \varepsilon_o}$ $\gamma = j \omega \sqrt{\mu_o \varepsilon_o}$ $\gamma = j \omega \sqrt{\mu_o \varepsilon_o}$ $\gamma = j \omega \sqrt{\mu_o \varepsilon_o}$ Equating real and imaginary parts, $\alpha = 0$ $\beta = \omega \sqrt{\mu_o \varepsilon_o}$(5)

ii. Guided Wavelength

 $\lambda_g = \frac{2\pi}{\beta}$

$$\lambda_g = rac{2\pi}{\omega \sqrt{\mu_o \, arepsilon_o}}$$

 $\omega = 2\pi f$ $v_o = \frac{1}{\sqrt{\mu_o \,\varepsilon_o}}$

 $\lambda_g = \frac{2\pi v_o}{2\pi f} = \lambda =$ Wavelength of free space(6)

iii. Velocity of Propagation

$$v = \frac{\omega}{\beta} = \frac{\omega}{\omega\sqrt{\mu_o \varepsilon_o}} = \frac{1}{\sqrt{\mu_o \varepsilon_o}} = C = NGINEE/(7)$$

Velocity of TEM is independent of frequency and has a familiar free space value, $C = 3x10^{8}$ m/s.

iv. From equ (7), cut off frequency is given by,

..(8)

$$f_c = \frac{m}{2a\sqrt{\mu_o \varepsilon_o}}$$

For m = 0
$$f_c = 0$$

Cut off frequency of the TEM waves is zero, indicating all the frequencies down to zero can propagate along the guide.

v. The ratio of the amplitudes of E to H between planes is defined as

characteristic wave impedance given by

$$\frac{E_x}{H_y} = \frac{\beta}{\omega\varepsilon} = \frac{\omega\sqrt{\mu_o \varepsilon_o}}{\omega\varepsilon_o} = \sqrt{\frac{\mu_o}{\varepsilon_o}} = \eta \qquad \dots \dots (9)$$

 Π is the intrinsic impedance of the dielectric medium existing between the planes.

vi. The total power propagating in the Z-direction is calculated using Poynting theorem

$$\gamma = \iint E X H \, dx \, dy$$
$$P = \int_{x=-\frac{a}{2}}^{x=+\frac{a}{2}} \int_{y=0}^{1} \left(\frac{E_x}{\sqrt{2}}\right) \left(\frac{H_y}{\sqrt{2}}\right) dx \, dy \text{ for 1 meter width along y direction}$$

$$P = \frac{1}{2} E_x H_y [x]_{-\frac{a}{2}}^{+\frac{a}{2}} [y]_0^1$$

$$P = \frac{1}{2} E_x H_y a$$

$$E_x = \eta H_y$$

$$P = \frac{1}{2} (\eta H_y) H_y a$$

$$P = \frac{1}{2} \eta a H_y^2 \text{ watts / meter of width.} (9)$$
CHARACTERISTICS OF TE AND TM WAVES:
The characteristics of TE and TM waves cab be studied by analyzing
propagation constant γ .
$$h^2 = \omega^2 \mu \varepsilon + \gamma^2$$

$$\gamma^2 = h^2 - \omega^2 \mu \varepsilon$$

$$\gamma = \sqrt{h^2 - \omega^2 \mu \varepsilon}$$

$$(f_c):$$
Sub $h = \frac{m\pi}{a}$ in equ (1),
$$\gamma = \sqrt{\left(\frac{m\pi}{a}\right)^2 - \omega^2 \mu \varepsilon} = \alpha + j\beta$$

$$(1)$$

When $\omega^2 \mu \varepsilon > \left(\frac{m\pi}{a}\right)^2$. (i.e) at higher frequencies, γ becomes imaginary equal equal to j β . Phase change for the wave occurs and hence the wave propagates. At lower frequencies, $\omega^2 \mu \varepsilon < \left(\frac{m\pi}{a}\right)^2$ so that ' γ ' becomes real equal to the attenuation constant ' α ' and ' β ' is zero. The wave completely attenuated and no propagation takes place.

As the frequency is decreased a critical frequency ω_c is reached when $\omega^2 \mu \varepsilon$

$$=\left(\frac{\mathrm{max}}{a}\right)$$
.

The frequency at which wave motion ceases or the frequency above which wave motion exits is called the cutoff frequency of the guide.

The system acts as a high pass filter with a cutoff frequency ' f_c ' and is defined as the frequency at which the attenuation condition changes to the propagation condition.

At
$$f = f_c$$
, $\gamma = 0$,
From equ (2),
 $\sqrt{\left(\frac{m\pi}{a}\right)^2 - \omega_c^2 \mu \varepsilon} = 0$
 $\omega_c^2 \mu \varepsilon = \left(\frac{m\pi}{a}\right)^2$
 $\omega_c^2 = \frac{1}{\mu \varepsilon} \left(\frac{m\pi}{a}\right)^2$
 $\omega_c = \sqrt{\frac{1}{\mu \varepsilon}} \left(\frac{m\pi}{a}\right)$
 $f_c = \frac{1}{2\pi \sqrt{\mu \varepsilon}} \cdot \frac{m\pi}{a}$
 $f_c = \frac{m}{2a \sqrt{\mu \varepsilon}}$

Cutoff frequency is defined as the frequency at which propagation constant changes from being real to imaginary.

$$\gamma = \sqrt{\left(\frac{m\pi}{a}\right)^2 - \omega^2 \mu \varepsilon}$$

$$\gamma = \frac{m\pi}{a} \sqrt{1 - \frac{\omega^2 \mu \varepsilon}{\left(\frac{m\pi}{a}\right)^2} SERVE OPTIMIZE OUTSPREAD}$$

$$\omega_c^2 \mu \varepsilon = \left(\frac{m\pi}{a}\right)^2$$

$$\gamma = \frac{m\pi}{a} \sqrt{1 - \frac{\omega^2 \mu \varepsilon}{\omega_c^2 \mu \varepsilon}}$$

$$\omega_c = 2\pi f_c$$

 $\omega_c = 2\pi f_c$ $\omega = 2\pi f$

 $\frac{\mathrm{m}\pi}{a} = \omega_c \sqrt{\mu \varepsilon}$

$$\gamma = \omega_c \sqrt{\mu \varepsilon} \sqrt{1 - \frac{f^2}{f_c^2}} \qquad \dots \dots (5)$$

For frequencies below cutoff where $f < f_c$ and γ is real, $\gamma = \alpha$, $\beta = 0$.

At frequencies above cutoff, $f > f_c$, γ is imaginary and $\alpha = 0$. Thus propagation will occur and

$$\beta = \frac{2\pi f_c \sqrt{\mu \varepsilon}}{f_c} \sqrt{\left(f^2 - f_c^2\right)}$$

EC8651 TRANSMISSION LINES AND RF SYSTEMS

$$\beta = 2\pi \sqrt{\mu \varepsilon} \sqrt{\left(f^2 - f_c^2\right)} \qquad \dots \dots \dots (7)$$

$$\gamma = j\beta = \sqrt{\left(\frac{m\pi}{a}\right)^2 - \omega^2 \mu \varepsilon}$$

$$j\beta = \sqrt{-\left[\omega^{2}\mu\varepsilon - \left(\frac{m\pi}{a}\right)^{2}\right]}$$

$$j\beta = j\sqrt{\omega^{2}\mu\varepsilon - \left(\frac{m\pi}{a}\right)^{2}}$$

$$\beta = \sqrt{\omega^{2}\mu\varepsilon - \left(\frac{m\pi}{a}\right)^{2}}$$
from equ (3),
Cut off frequency $f_{c} = \frac{m}{2a\sqrt{\mu\varepsilon}}$

$$f_{c} = \frac{m v}{2a}$$

$$v = v$$

v is the velocity of propagation = $3 \times 10^{8} m/s$

ii. Wavelength (λ) / Guided Wavelength (λ_a):

The distance travelled by a wave to under go a phase shift of 2π radians is called wavelength. It is the wavelength in the direction of propagation and hence also called as guided wavelength.

$$\lambda = \frac{2\pi}{\beta} = \lambda_g$$

$$\lambda_g = \frac{2\pi}{\sqrt{\omega^2 \mu \varepsilon - \left(\frac{m\pi}{a}\right)^2}} \qquad \dots (9)$$

iii. Cut off Wavelength(λ_c):

Wavelength at cutoff frequency is called as cutoff wavelength.

EC8651 TRANSMISSION LINES AND RF SYSTEMS

 $\lambda = \frac{v}{f}$

 $\lambda_g = rac{\lambda}{\sqrt{1 - rac{f_c^2}{f^2}}}$

