
Rohini college of Engineering and technology

30
CS8392 Object Oriented Programming

3.11 Reading and Writing files
Java provides a number of classes and methods that allow you to read and write

files.

There are two stream classes

1. FileInputStream
2. FileOutputStream

These above classes are used to create byte streams linked to files.
FileInputStream(String fileName) throws

FileNotFoundException
FileOutputStream(String fileName) throws

FileNotFoundException

Where

fileName specifies the name of the file that want to open. When you create
an input stream, if the file does not exist, then FileNotFoundException is thrown.

For output streams, if the file cannot be opened or created, then
FileNotFoundException is thrown. FileNotFoundException is a subclass of

IOException. When an output file is opened, any preexisting file by the same name

is destroyed.

2.1.1 Java FileInputStream Class
Java FileInputStream class obtains input bytes from a file. It is used for reading

byte-oriented data (streams of raw bytes) such as image data, audio, video etc. You

can also read character-stream data.

Java FileInputStream class declaration

public class FileInputStream extends InputStream

Java FileInputStream class methods

Method Description

int available() It is used to return the estimated number of bytes

that can be read from the input stream.

int read() It is used to read the byte of data from the input

stream.

int read(byte[] b) It is used to read up to b.length bytes of data
from the input stream.

int read(byte[] b, int off, int
len)

It is used to read up to len bytes of data from the
input stream.

Rohini college of Engineering and technology

31
CS8392 Object Oriented Programming

long skip(long x) It is used to skip over and discards x bytes of

data from the input stream.

FileChannel getChannel() It is used to return the unique FileChannel object
associated with the file input stream.

FileDescriptor getFD() It is used to return the FileDescriptor object.

protected void finalize() It is used to ensure that the close method is call
when there is no more reference to the file input

stream.

void close() It is used to closes the stream.

Table 3.6 Java FileInputStream Class Methods

Example Program1:

import java.io.FileInputStream;

public class DataStreamExample

{
public static void main(String args[])

{
try

{
FileInputStream fin=new FileInputStream("D:\\testout.txt");
int i=fin.read();

System.out.print((char)i);

fin.close();

}
catch(Exception e)

{
System.out.println(e);

}

}

}

Before running the code, a text file named as "testout.txt" is required to be

created. In this file, we are having following content:

testout.txt

Welcome to Java Stream Classes.

Output:

W

Example Program2
import java.io.FileInputStream;

public class DataStreamExample

{
public static void main(String args[])

Rohini college of Engineering and technology

32
CS8392 Object Oriented Programming

{
try

{
FileInputStream fin=new FileInputStream("D:\\testout.txt");
int i=0;

while((i=fin.read())!=-1)

{
System.out.print((char)i);

}
fin.close();

}
catch(Exception e)

{
System.out.println(e);

}

}

}

testout.txt

Welcome to Java Stream Classes.

Output:

Welcome to Java Stream Classes.

2.1.2 Java FileOutputStream Class

Java FileOutputStream is an output stream used for writing data to a file. You can
write byte-oriented as well as character-oriented data through FileOutputStream

class. But, for character-oriented data, it is preferred to use FileWriter than

FileOutputStream.

FileOutputStream class declaration

public class FileOutputStream extends OutputStream

FileOutputStream class methods

Method Description

protected void finalize() It is used to clean up the connection with the file

output stream

void write(byte[] ary) It is used to write ary.length bytes from the

byte array to the file output stream.

void write(byte[] ary, int
off, int len)

It is used to write len bytes from the byte array
starting at offset off to the file output stream.

void write(int b) It is used to write the specified byte to the file

output stream.

Rohini college of Engineering and technology

33
CS8392 Object Oriented Programming

FileChannel getChannel() It is used to return the file channel object
associated with the file output stream.

FileDescriptor getFD() It is used to return the file descriptor associated

with the stream.

void close() It is used to close the file output stream.

Table 3.7 Java FileOutputStream Class Methods

Example Program1:

import java.io.FileOutputStream;

public class FileOutputStreamExample

{
public static void main(String args[])

{
try

{
FileOutputStream fout=new FileOutputStream("D:\\testout.txt");
fout.write(65);

fout.close();

System.out.println("success...");

}
catch(Exception e)

{
System.out.println(e);

}

}

}

Output:

success...

textout.txt

A

Example Program2:

import java.io.FileOutputStream;

public class FileOutputStreamExample

{
public static void main(String args[])

{

try

{
FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

String s="Welcome to javaTpoint.";
byte b[]=s.getBytes();//converting string into byte array fout.write(b);

Rohini college of Engineering and technology

34
CS8392 Object Oriented Programming

fout.close();

System.out.println("success...");

}
catch(Exception e)

{
System.out.println(e);

}

}

}

Output:

success...

testout.txt

Welcome to Java Stream Classes.

2 Mark Questions and Answers

1. What is an Exception?
A Java exception is an object that finds an exceptional condition occurs from a

piece of code. An exception object is created and thrown to the method from the

code where an exception is found.

2. Write down the purpose of exception handling mechanism.

The main purpose of exception handling mechanism is used to detect and report
an “exceptional circumstance” so that necessary action can be taken. It performs

the following tasks
5. Find the problem(Hit the exception)

6. Inform that an error occurred(throw the exception).

7. Receive the error information(Catch the exception)

8. Take corrective actions(Handle the exception)

3. What are the types of exceptions?

There are two types of exceptions
1. Predefined Exceptions-The Exceptions which are predefined are called

predefined exceptions
2. Userdefined Exceptions- The Exceptions which are defined by the user are

called userdefined exceptions

4. How the exception handling is managed?
Java exception handling is managed via five keywords.

Rohini college of Engineering and technology

35
CS8392 Object Oriented Programming

• try

• catch

• throw

• throws and

• finally

5. Write down the general form of an exception-handling block.

The general form of an exception-handling block

try

{
// block of code to monitor for errors

}
catch (ExceptionType1 exOb)

{
// exception handler for ExceptionType1

}
catch (ExceptionType2 exOb)

{
// exception handler for ExceptionType2

}
// ...
finally

{
// block of code to be executed after try block ends

}

6. What are the two subclasses under Throwable class?

Throwable is a superclass for all exception types. Thus, Throwable is at top of the
exception hierarchy.

There are two subclasses under Throwable class.
3. Exception

4. Error

7. What is an Error?

The another subclass is by Error, which defines exceptions that are not expected

to be caught under normal circumstances by your program.

Rohini college of Engineering and technology

36
CS8392 Object Oriented Programming

Exceptions of type Error are used by the Java run-time system to indicate errors
having to do with the run-time environment, itself.

Eg: Stack overflow is an example of such an error.

8. What is an Exception?

This class is used for exceptional conditions that user programs should catch. We

can also subclass this class to create own custom exception types.
The important subclass of this class is RuntimeException.

RuntimeException
Exceptions of this type are automatically defined for the programs that you write

and include thing such as division by zero and invalid array indexing.

9. Draw the diagrammatical representation for Exception Hierarchy

Throwable

Exception

10. Write down the use of try and catch block in exception handling.
The try block allows us to fix the errors. Catch block prevents the program from

automatically terminating. To handle a run-time error, enclose the code to be
monitored inside a try block. After the try block, include a catch block that specifies

the exception type that needs to be caught.

Syntax:

try

{
statement;
}
catch(Exception-type exOb)

{
statement;

StackOverflowEnor

OutOfMemory Error

lOExcepton

VirtualMac tiineError

ClassNot
FoundExcepbon

Rohini college of Engineering and technology

37
CS8392 Object Oriented Programming

}

11. Explain the situation where we need to use multiple catch clauses.

In some situation, more than one exception can occur by a single piece of code. To
handle this situation, we can use two or more catch clauses, each catching a different

type of exception. When an exception is thrown, each catch block is executed in
order, and the first one whose type matches that exception is executed.After one

catch block executes, the others are bypassed, and continues after the try/catch

block.

12. Write down the syntax for multiple catch clauses.

The syntax for multiple catch clauses

try

{
// block of code to monitor for errors

}
catch (ExceptionType1 exOb)

{
// exception handler for ExceptionType1

}
catch (ExceptionType2 exOb)

{
// exception handler for ExceptionType2

}

13. Explain the situation where we need to use nested try statements.
The try statement can be nested. That is, a try statement can be inside the block

of another try. Each time a try statement is entered, the context of that exception
is pushed on the stack. If an inner try statement does not have a catch handler for

a particular exception, the stack is unwound and the next try statement’s catch
handlers are inspected for a match. This continues until one of the catch statements

succeeds, or until all of the nested try statements are exhausted. If no catch

statement matches, then the Java run-time system will handle the exception.

14. Write down the syntax for nested try statement.
The syntax for nested try statement:

//Main try block

try

{
statement 1;
statement 2;
//try-catch block inside another try block

try

{

Rohini college of Engineering and technology

38
CS8392 Object Oriented Programming

statement 3;
statement 4;
//try-catch block inside nested try block

try

{
statement 5;
statement 6;

}
catch(Exception e2)

{
//Exception Message

}

}
catch(Exception e1)

{
//Exception Message

}
}
//Catch of Main(parent) try block
catch(Exception e3)

{
//Exception Message

}

15. Write down the use of throw statement.
The throw keyword in Java is used to explicitly throw an exception from a

method or any block of code. We can throw either checked or unchecked
exception.

Syntax:

throw new exception_class("error message");

For example:

throw new ArithmeticException("dividing a number by 5 is not allowed in this

program");

16. Write down the use of throws clause.
Using throws clause, We can list the types of exceptions that a method might

throw.The exceptions which are thrown in a method might be using throws clause.
If they are not, a compile-time error will result.

Syntax:

type method-name(parameter-list) throws exception-list

{
// body of method

}

Rohini college of Engineering and technology

39
CS8392 Object Oriented Programming

Exception-list is a comma-separated number of exceptions that a method can throw.

17. Write down the use of finally clause.

finally creates a block of code that is to be executed after a try/catch block has
completed its execution.The finally block will execute if an exception is thrown or

not thrown. The finally clause is optional.Each try block requires either one catch or

a finally clause
Syntax:

try

{
//Statements that may cause an exception

}
catch

{
//Handling exception

}
finally

{
//Statements to be executed

}

18. What is Unchecked Exception?

These are the exceptions that are not checked at compiled time. In C++, all

exceptions are unchecked, so it is not forced by the compiler to either handle or
specify the exception. It is up to the programmers to be civilized, and specify or

catch the exceptions.

19. What is Checked Exception?
These are the exceptions that are checked at compile time. If some code within a

method throws a checked exception, then the method must either handle the

exception or it must specify the exception using throws keyword.

20. Write down some of the unchecked exceptions in RuntimeException?
The unchecked exceptions in RuntimeException are ArithmeticException,

ArrayIndexOutOfBoundsException, ArrayStoreException,
ClassCastException, EnumConstantNotPresentException,

IllegalArgumentException, IllegalMonitorStateException,
IllegalStateException, IllegalThreadStateException,

IndexOutOfBoundsException, NegativeArraySizeException,
NullPointerException, NumberFormatException, SecurityException,

StringIndexOutOfBoundsException, TypeNotPresentException,

Rohini college of Engineering and technology

40
CS8392 Object Oriented Programming

UnsupportedOperationException

21. Write down some of the checked exceptions in RuntimeException?
The checked exceptions in RuntimeException ClassNotFoundException,

CloneNotSupportedException, IllegalAccessException,
InstantiationException, InterruptedException, NoSuchFieldException,

NoSuchMethodException, ReflectiveOperationException

22. Explain the way to create own exceptions.

We can throw our own exceptions using throw keyword.
Syntax:

throw new Throwable_subclass;
Eg:

throw new ArithmeticException;

23. Define Stack Trace Elements.
The StackTraceElement is a class that describes a single stack frame,which is an

element of a stack trace when an exception occurs.The getStackTrace() method is

used to return an array of StackTraceElements.
Each stack frame contains the following

5. the class name
6. the method name

7. The file name

8. And the source-code line number

24. List out the methods in StackTraceElements

The methods in StackTraceElements are

• boolean equals(Object ob)

• String getClassName()

• String getFileName()

• int getLineNumber()

• String getMethodName()

• int hashCode()
• boolean isNativeMethod()

• String toString()

25. What is meant by a stream?

A stream is an abstraction that either produces or consumes information.
A stream is linked to a physical device by the java I/O system.The input stream

may abstract many different kinds of input: from a disk file,a keyboard,or a
network socket. Likewise,an output stream may refer to the console such as a

disk file, or a network connection.

26. What are the two types of streams?

Rohini college of Engineering and technology

41
CS8392 Object Oriented Programming

There are two types of streams
3. Byte streams

4. Character streams

27. What are the predefined stream variables in System class?
System class contains three predefined stream variables:

4. in
5. out

6. err
System.in refers to the standard input stream. System.out refers to the standard

output stream.System.err refers to the standard error

stream.System.System.in is an object of type InputStream; System.out and
System.err are objects of type PrintStream. These are byte streams, they are

typically used to read and write characters from and to the console.

28. What is meant by a byte stream?
Byte Streams provides a convenient way for handling input and output of

bytes. When reading or writing binary data, byte streams are used.

29. What are abstract classes in byte streams?

There are two abstract classes defined in byte streams
3. InputStream

4. OutputStream

30. List out some of the Byte Stream Classes.
BufferedInputStream, BufferedOutputStream, ByteArrayInputStream,

ByteArrayOutputStream, DataInputStream, DataOutputStream,

FileInputStream, FileOutputStream, InputStream, OutputStream

31. What is meant by a Character stream?
Character Streams provides a convenient way for handling input and output of

characters.

32. What are abstract classes in Character streams?
There are two abstract classes defined in byte streams

3. Reader

4. Writer

33. List out some of the Character Stream Classes.
BufferedReader, BufferedWriter, CharArrayReader, CharArrayWriter, FileReader,

FileWriter, Reader, Writer

34. How to read a character from BufferedReader Class?

To read a character from a BufferedReader,We can use read() method.

Rohini college of Engineering and technology

42
CS8392 Object Oriented Programming

Syntax:

int read() throws IOException

Whenever read() method is called, it reads a character from the input stream and

returns an integer value.It returns -1 when the end of the stream is encountered.

35. How to read the string from BufferedReader Class?

To read a string from the keyboard,we can use readLine() method.readLine() is a
member of the BufferedReader class.

Syntax:

String readLine() throws IOException

36. What is the use of PrintWriter class?

PrintWriter is one of the character-based classes.
Constructor:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

ouputStream is an object of OutputStream class.flushOnNewline controls

when Java flushes the output stream every time a println() method is
called. If flushOnNewline is true, flushing automatically takes place. If false,

flushing is not automatic.
To write to the console by using a PrintWriter, specify System.out for the output

stream and flush the stream after each newline.

37. Write the use of FileInputStream class

Java FileInputStream class obtains input bytes from a file. It is used for reading
byte-oriented data (streams of raw bytes) such as image data, audio, video etc.

You can also read character-stream data.
38. Write down the methods in FileInputStream Class.

The methods in FileInputStream class are

• int available()

• int read()

• long skip(long x)

• FileChannel getChannel()

• FileDescriptor getFD()

• protected void finalize()

• void close()

39. Write the use of FileOutputStream class.

Java FileOutputStream is an output stream used for writing data to a file. You can
write byte-oriented as well as character-oriented data through FileOutputStream

class. But, for character-oriented data, it is preferred to use FileWriter than

FileOutputStream.

Rohini college of Engineering and technology

43
CS8392 Object Oriented Programming

40. Write down the methods in FileOutputStream Class.
The methods in FileOutputStream class are

• protected void finalize()

• void write(byte[] ary)

• void write(int b)

• FileChannel getChannel()

• FileDescriptor getFD()

• void close()

13 Marks Questions
1. Explain the Throwing and Catching Exception.

2. What is exception? How to throw an exception? Give an example.
3. What is finally class? How to catch exceptions? Write an example.

4. What is meant by exceptions? Why it is needed? Describe the exception
hierarchy.

5. Write note on Stack Trace Elements. Give example.
6. Define Exception and explain its different types with example.

7. Discuss about character stream classes.

8. With suitable coding discuss all kinds of exception handling.
9. Write a note on java.io package with its stream classes and methods in it.

10. Write a Java program to demonstrate I/O character stream classes.
11. Write short notes on PrintStream class.

12. Explain how user-defined exception subclasses are created in Java.

15 Marks Questions

1. What is the necessity of exception handling? Explain exception handling taking
“Divide -by Zero” as an example.

2. What is an exception? Create your own exception for “Temperature>40” in an
“Atomic Reactor Based Application” and write appropriate exception handling

code in the main program.
3. Write a Java program to copy the data from one file to another file.

4. Write a program that uses a sequence input stream to output the contents of
two files.

5. List the five keywords in Java exception handling. Describe the use of the

keywords.

