MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY

- Cryptography is based on some specific areas of mathematics including number theory, linear algebra, and algebraic structures.
- Symmetric ciphers use symmetric algorithms to encrypt and decrypt data. These ciphers are used in symmetric key cryptography.
- A symmetric algorithm uses the same key to encrypt data as it does to decrypt data.

ALGEBRAIC STRUCTURES

- Algebra is about operations on sets.
- You have met many operations; for example:
- addition and multiplication of numbers;
- modular arithmetic;
- addition and multiplication of polynomials;
- addition and multiplication of matrices;
- union and intersection of sets;
- composition of permutations.

Reference :William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006

Sets

- A set is a well-defined collection of distinct objects, considered as an object in its own right.
- Two sets are equal if and only if they have the same members
- That is, $A=B$ if and only $\operatorname{if}((x \in A) \Leftrightarrow(x \in B))$.
- This means that, to prove that two sets are equal, you have to do two things:
- (i) show that any element of A lies in B;
- (ii) show that any element of B lies in A.
- (i) means that $\mathrm{A} \subseteq \mathrm{B}$ (that is, A is a subset of B), while
- (ii) means that $\mathrm{B} \subseteq \mathrm{A}$.
- So we can re-write our rule:
- $A \subseteq B$ if and only if $((x \in A) \Rightarrow(x \in B))$,
- $\mathrm{A}=\mathrm{B}$ if and only if $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$.
- From two sets A and B we can build new ones:
- union: $\mathrm{A} \cup \mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathrm{A}$ or $\mathrm{x} \in \mathrm{B}\}$;
- intersection: $A \cap B=\{x: x \in A$ and $x \in B$;
- difference: $\mathrm{A} \backslash \mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \in / \mathrm{B}\}$;
- symmetric difference: $\mathrm{A} \Theta \mathrm{B}=(\mathrm{A} \backslash \mathrm{B}) \cup(\mathrm{B} \backslash \mathrm{A})$.

Functions

- A function f from A to B is, informally, a "black box" such that, if we input an element a $\in A$, then an element $f(a) \in B$ is output.
- More formally, a function is a set of ordered pairs (that is, a subset of the cartesian product $A \times B$) such that, for any $a \in A$, there is a unique $b \in B$ such that $(a, b) \in f$; we write $b=f(a)$ instead of $(a, b) \in f$.
- The sets A and B are called the domain and codomain of f; its image consists of the set
- $\{b \in B: b=f(a)$ for some $a \in A\}$, a subset of the codomain.
- A function f is surjective (or onto) if, for every $b \in B$, there is some $a \in A$ such that $b=$ $\mathrm{f}(\mathrm{a})$ (that is, the image is the whole codomain);
- injective (or one-to-one) if $\mathrm{a} 1 \neq \mathrm{a} 2$ implies $\mathrm{f}(\mathrm{a} 1) \neq \mathrm{f}(\mathrm{a} 2)$ (two different elements of A cannot have the same image);
- bijective if it is both injective and surjective.

Operations

- An operation is a special kind of function.
- An n -ary operation on a set A is a function f from $\mathrm{A}^{\mathrm{n}}=\mathrm{A} \times \cdots \times \mathrm{A}$ to A .
- That is, given any a $1, \ldots$, an $\in A$, there is a unique element $b=f(a 1, \ldots, a n) \in A$ obtained by applying the operation to these elements.
- The most important cases are $\mathrm{n}=1$ and $\mathrm{n}=2$; we usually say unary for " 1 - ary", and binary for "2-ary". We have already seen that many binary operations (addition, multiplication, composition) occur in algebra

Example

- Addition, multiplication, and subtraction are binary operations on R, defined by
- $\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{a}+\mathrm{b}$ (addition),
- $\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{ab}$ (multiplication),
- $f(a, b)=a-b$ (subtraction).
- Taking the negative is a unary operation: $f(a)=-a$

Notation

- we often write binary operations, not in functional notation, but in either of two different ways:
- infix notation, where we put a symbol for the binary operation between the two elements that are its input, for example $a+b, a-b, a \cdot b, a * b, a \circ b, a \cdot b$; or
- juxtaposition, where we simply put the two inputs next to each other, as ab (this is most usually done for multiplication).
- There are various properties that a binary relation may or may not have. Here are two. We say that the binary operation ${ }^{\circ}$ on A is
- commutative if $\mathrm{a} \circ \mathrm{b}=\mathrm{b} \circ \mathrm{a}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$;
- associative if $(a \circ b) \circ c=a \circ(b \circ c)$ for all $a, b, c \in A$.
- For example, addition on R is commutative and associative; multiplication of 2×2 matrices is associative but not commutative; and subtraction is neither.

Relations

- A binary relation R on A is a subset of $A \times A$. If $(a, b) \in R$, we say that a and b are related, otherwise they are not related, by R.
- As with operations, we often use infix notation, for example $a<b, a \leq b, a=b, a \sim=b, a$ \sim b.
- But note the difference:
- +is an operation, so $\mathrm{a}+\mathrm{b}$ is a member of A ;
- < is a relation, so $\mathrm{a}<\mathrm{b}$ is an assertion which is either true or false.
- Example Let $\mathrm{A}=\{1,2,3\}$.
- Then the relation < on A consists of the pairs
$\{(1,2),(1,3),(2,3)\}$,
- while the relation \leq consists of the pairs
$\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$.
- Also like operations, there are various laws or properties that a relation may have.
- We say that the binary operation R on A is
- reflexive if $(a, a) \in R$ for all $a \in A$;
- irreflexive if $(a, a) \in / R$ for all $a \in A$;
- \quad symmetric if $(a, b) \in R$ implies $(b, a) \in R$;
- antisymmetric if(a,b) and (b,a) are never both in R except possibly if $a=b ;$
- \quad transitive if $(a, b) \in R$ and $(b, c \in R$ imply $(a, c) \in R$.
- For example, $<$ is irreflexive, antisymmetric and transitive, while \leq is reflexive, antisymmetric and transitive.

Equivalence relations and partitions

- A binary relation R on A is an equivalence relation if it is reflexive, symmetric and transitive.
- A partition P of A is a collection of subsets of A having the properties
- (a) every set in P is non-empty;
- (b) for every element $a \in A$, there is a unique set $X \in P$ such that $a \in X$.
- The second condition says that the sets in P cover A without overlapping.

Algebraic Structure

- A non empty set S is called an algebraic structure w.r.t binary operation $\left({ }^{*}\right)$ if it follows following axioms:
- Closure: $\left(a^{*} b\right)$ belongs to S for $a l l a, b \in S$.
- $\operatorname{Ex}: S=\{1,-1\}$ is algebraic structure under *
- As $1^{*} 1=1,1^{*}-1=-1,-1^{*}-1=1$ all results belongs to S .
- But above is not algebraic structure under + as $1+(-1)=0$ not belongs to S.

Semi Group

- A non-empty set $\mathrm{S},\left(\mathrm{S},{ }^{*}\right)$ is called a semigroup if it follows the following axiom:
- Closure: $(\mathrm{a} * \mathrm{~b})$ belongs to S for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{S}$.
- Associativity: $\mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{c}\right)=\left(\mathrm{a}^{*} \mathrm{~b}\right) * \mathrm{c} \forall \mathrm{a}, \mathrm{b}, \mathrm{c}$ belongs to S .
- Note: A semi group is always an algebraic structure.
- Ex : (Set of integers, +), and (Matrix ,*) are examples of semigroup.

Monoid

- A non-empty set $S,\left(S,{ }^{*}\right)$ is called a monoid if it follows the following axiom:
- Closure: $(\mathrm{a} * \mathrm{~b})$ belongs to S for all $\mathrm{a}, \mathrm{b} \in \mathrm{S}$.
- Associativity: $\mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{c}\right)=\left(\mathrm{a}^{*} \mathrm{~b}\right) * \mathrm{c} \forall \mathrm{a}, \mathrm{b}, \mathrm{c}$ belongs to S .
- Identity Element: There exists $e \in S$ such that $a^{*} e=e^{*} a=a \forall a \in S$
- Note: A monoid is always a semi-group and algebraic structure.
- Ex : (Set of integers,*) is Monoid as 1 is an integer which is also identity element . (Set of natural numbers, +) is not Monoid as there doesn't exist any identity element. But this is Semigroup.
- But (Set of whole numbers, +) is Monoid with 0 as identity element.

Group

- A non-empty set $\mathrm{G},(\mathrm{G}, *)$ is called a group if it follows the following axiom:
- Closure:(a*b) belongs to G for all $\mathrm{a}, \mathrm{b} \in \mathrm{G}$.
- Associativity: $\mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{c}\right)=\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{c} \forall \mathrm{a}, \mathrm{b}, \mathrm{c}$ belongs to G .
- Identity Element:There exists $e \in G$ such that $a^{*} e=e^{*} a=a \forall a \in G$
- Inverses: $\forall a \in G$ there exists $a^{-1} \in G$ such that $a^{*} a^{-1}=a^{-1 *} a=e$

Note:

- A group is always a monoid, semigroup, and algebraic structure.
- $(\mathrm{Z},+)$ and Matrix multiplication is example of group.

Abelian Group or Commutative group

- A non-empty set $\mathrm{S},\left(\mathrm{S},{ }^{*}\right)$ is called a Abelian group if it follows the following axiom:
- Closure: $\left(a^{*} \mathrm{~b}\right)$ belongs to S for all $\mathrm{a}, \mathrm{b} \in \mathrm{S}$.
- Associativity: $\mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{c}\right)=\left(\mathrm{a}^{*} \mathrm{~b}\right) * \mathrm{c} \forall \mathrm{a}, \mathrm{b}, \mathrm{c}$ belongs to S .
- Identity Element:There exists $e \in S$ such that $a^{*} e=e^{*} a=a \forall a \in S$
- Inverses: $\forall a \in S$ there exists $a^{-1} \in S$ such that $a^{*} a^{-1}=a^{-1} * a=e$
- Commutative: $a^{*} b=b^{*}$ a for all $a, b \in S$
- Note : $(\mathrm{Z},+)$ is a example of Abelian Group but Matrix multiplication is not abelian group as it is not commutative.

