
Rohini college of Engineering and technology

1
CS8392 Object Oriented Programming

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING

Differences between multi-threading and multitasking, thread life
cycle, creating threads, synchronizing threads, Inter-thread
communication, daemon threads, thread groups. Generic
Programming - Generic classes - generic methods - Bounded
Types - Restrictions and Limitations.

4.1 Differences between multi-threading and multitasking

4.1.1 Multithreading

A multithreaded program runs two or more programs run
concurrently. Each part of such a program is called a thread, and
each thread defines a separate path of execution.

4.1.2 Multitasking
Multitasking is the process of running two or more programs
concurrently. There are two types

1. Process based multitasking-A process is nothing but a program
that is executing. It is the feature that runs two or more
programs concurrently.

2. Thread based multitasking-The thread is the smallest unit of
dispatchable code. A program can perform two or more tasks
simultaneously.

4.2 Thread Life Cycle Definition of Thread
A thread is a lightweight sub process, a smallest unit of
processing. It is a separate path of execution.
Threads are independent, if there occurs exception in one thread,
it doesn't affect other threads. It shares a common memory area.

During the life time of a thread, it enters into various states. The
states are

1. Newborn State
2. Runnable State
3. Running State

Rohini college of Engineering and technology

2
CS8392 Object Oriented Programming

4. Blocked State

5. Dead State
A thread can move from one state to another state. It is always in
one of these five states.

1.Newborn State
When we create a thread object, the thread is born and is said to

be newborn -state. In this state, we can do the following tasks
• Schedule a thread for running using start() method
• Kill a thread using stop() method

Fig 4.2 Scheduling a Newborn State

If a newborn thread is scheduled,it moves to the runnable state.

(Not Runnable,

Fig 4.1 Life Cycle of a thread

Rohini college of Engineering and technology

3
CS8392 Object Oriented Programming

2 .Runnable State

The runnable state means that the thread is ready for execution and
is waiting for the availability of the processor.The thread is waiting
in the queue for its execution.If all threads have equal priority,then
they are given time slots for execution in roundrobin fashion,that
means first-come,first-serve manner.This process of assigning time
to threads is known as time-slicing.
If we want a thread to relinquish control to another thread to equal
priority before it turns comes, we can do the same by using yield()
method.

3 . Running State
Running means that the thread is allotted with the processor for its
execution.The thread runs until higher priority thread comes.A
running thread may relinquish its control in one of the following
situations a)suspend() method:
We can suspend the running thread for some time by using
suspend() method. A suspended thread may resume by using
resume() method.

Fig 4.4 suspend() Method b)sleep()
method:

We can put the running thread into sleep mode for some specified
time period by using sleep(time)where time is in milliseconds. This
means that the thread is out of the queue during the time

Fig 4.3 Yield() Method

Rohini college of Engineering and technology

4
CS8392 Object Oriented Programming

period.The thread re-enters into runnable state as soon as this

time period is elapsed.

Fig 4.5 sleep() Method c)wait() method:
The thread is in wait state until some event occurs. This is done
using wait() method. The thread can be scheduled to run again
using the notify() method.

Fig 4.6 wait Method

4.Blocked State
A thread is said to be blocked when it is prevented from entering
into the runnable state and subsequently the running state. This
happens when the thread is suspended, sleeping, or waiting in order

to satisfy certain requirements. A blocked thread is considered “not
runnable” but not dead and fully qualified to run again.

5 .Dead State
Every thread has a life cycle. A running thread ends its life when it
has completed executing its run() method. It is a natural death. We
can kill it by sending the stop message to it at any state.

6 .3 Creating Threads

Creating threads in java is simple. Threads are implemented
in the form of objects that contain a method called run(). The run()
method is the heart and soul of any thread.It makes up the entire
body of a thread and implements the thread’s behavior.

Syntax: public void run()

{

Rohini college of Engineering and technology

5
CS8392 Object Oriented Programming

 //Statements for implementing thread }

The run() method must be invoked by an object of the concerned
thread. This can be achieved by creating the thread and
instantiating it with the help of stop() method.

A new thread can be created in two ways
• You can implement the Runnable interface.
• You can extend the Thread class, itself.

The Thread class defines several methods that help manage

threads.

Method Meaning

getName() Obtain a thread’s name.

getPriority() Obtain a thread’s priority.

isAlive() Determine if a thread is still running.

join() Wait for a thread to terminate.

run() Entry point for the thread.

sleep() Suspend a thread for a period of time.

start() Start a thread by calling its run method.

Table 4.1 Methods of Thread Class

4.3.1 The Main Thread
When a Java program starts up, one thread begins running
immediately.This is called as the main thread of the
program,because it is the one that is executed when the progam
begins.
The main thread is important for two reasons

• It is the thread from which other “child” threads will be
spawned.

• Often, it must be the last thread to finish execution because
it performs various shutdown actions.

Although the main thread is created automatically when your
program is started, it can be controlled through a Thread object.
To do so, you must obtain a reference to it by calling the method
currentThread(), which is a public static member of Thread.

Rohini college of Engineering and technology

6
CS8392 Object Oriented Programming

General Form:

static Thread currentThread()
Example Program:
class CurrentThreadDemo

{
public static void main(String args[])

{
Thread t = Thread.currentThread();
System.out.println("Current thread: " + t);
// change the name of the thread
t.setName("My Thread");

System.out.println("After name change: " + t);
try

{
for(int n = 5; n > 0; n--)

{
System.out.println(n);
Thread.sleep(1000);

}
}
catch (InterruptedException e)

{
System.out.println("Main thread interrupted");

}
}
}

Output:
Current thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]

5
4
3
2

1

4.3.2 Implementing Runnable
The easiest way to create a thread is to create a class that

Rohini college of Engineering and technology

7
CS8392 Object Oriented Programming

implements the Runnable interface. Runnable abstracts a unit of

executable code. You can construct a thread on any object that
implements Runnable. To implement Runnable, a class need
only implement a single method called run(), which is declared
like this:

public void run()

After you create a class that implements Runnable, you will
instantiate an object of type Thread from within that class.
Thread defines several constructors. The one that we will use is

shown here:
Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that
implements the Runnable interface. This defines where execution
of the thread will begin. The name of the new thread is specified
by threadName.
After the new thread is created, it will not start running until you
call its start() method, which is declared within Thread. In
essence, start() executes a call to run(). The start() method
is shown here:

void start()

Example Program:
class NewThread implements Runnable {

Thread t;
NewThread()

{

// Create a new, second thread
t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start(); // Start the thread

}
// This is the entry point for the second thread. public void run()

{
try {

Rohini college of Engineering and technology

8
CS8392 Object Oriented Programming

for(int i = 5; i > 0; i--)

{
System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
}
catch (InterruptedException e)

{
System.out.println("Child interrupted.");

}
System.out.println("Exiting child thread.");

}
}
class ThreadDemo

{
public static void main(String args[])

{
new NewThread(); // create a new thread try

{
for(int i = 5; i > 0; i--)

{
System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
}
catch (InterruptedException e)

{
System.out.println("Main thread interrupted.");

}
System.out.println("Main thread exiting.");

}
}

Output:
Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5
Child Thread: 4

Rohini college of Engineering and technology

9
CS8392 Object Oriented Programming

Main Thread: 4

Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

4.3.2 Extending Thread
The second way to create a thread is to create a new class that
extends Thread, and then to
create an instance of that class. The extending class must override
the run() method,which
is the entry point for the new thread. It must also call start() to
begin execution of the new thread. Here is the preceding program
rewritten to extend Thread:

Example Program:
class NewThread extends Thread

{
NewThread()

{
// Create a new, second thread
super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread

}
// This is the entry point for the second thread. public void run()

{ try { for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);

} }
catch (InterruptedException e) {

System.out.println("Child interrupted."); }

System.out.println("Exiting child thread."); }

Rohini college of Engineering and technology

10
CS8392 Object Oriented Programming

}
class ExtendThread {
public static void main(String args[])

{
new NewThread(); // create a new thread try { for(int i = 5; i > 0;
i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e)

{
System.out.println("Main thread interrupted.");

}
System.out.println("Main thread exiting.");

}

}

Output:
Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5

Child Thread: 4
Main Thread: 4
Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

4.3.3 Creating Multiple Threads
Multiple threads can be created and executed concurrently at

the same time.

Example Program:

Rohini college of Engineering and technology

11
CS8392 Object Oriented Programming

class NewThread implements Runnable

{
String name; // name of thread
Thread t;
NewThread(String threadname)

{
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread

}
// This is the entry point for thread.
public void run()

{
try

{
for(int i = 5; i > 0; i--)

{
System.out.println(name + ": " + i);
Thread.sleep(1000);

}
}
catch (InterruptedException e)

{
System.out.println(name + "Interrupted");

}
System.out.println(name + " exiting.");

}
}
class MultiThreadDemo

{
public static void main(String args[])

{
new NewThread("One"); // start threads
new NewThread("Two");
new NewThread("Three");
try {
// wait for other threads to end Thread.sleep(10000);

Rohini college of Engineering and technology

12
CS8392 Object Oriented Programming

}
catch (InterruptedException e)

{
System.out.println("Main thread Interrupted");

}
System.out.println("Main thread exiting.");

}
}

Output:
New thread: Thread[One,5,main]

New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5

Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3

Three: 3
Two: 3
One: 2
Three: 2
Two: 2
One: 1
Three: 1
Two: 1
One exiting.
Two exiting.

Three exiting.
Main thread exiting.

4.3.4 Using isAlive() and join()
isAlive() method
To determine whether a thread has finished, we can use
isAlive() method on the thread.

Rohini college of Engineering and technology

13
CS8392 Object Oriented Programming

Syntax:
final boolean isAlive()

The isAlive() returns true if the thread is still running.It
returns false otherwise.

join() method
The method that you will more commonly use to wait for a thread
to finish is called join()

Syntax:
final void join() throws InterruptedException

This method waits until the thread on which it is called terminates.
join() allow you to specify a maximum amount of time that you
want to wait for the specified thread to terminate.

Example Program:
class NewThread implements Runnable

{
String name; // name of thread
Thread t;
NewThread(String threadname)

{
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread

}
// This is the entry point for thread.
public void run()

{
try

{
for(int i = 5; i > 0; i--)

{
System.out.println(name + ": " + i);
Thread.sleep(1000);

Rohini college of Engineering and technology

14
CS8392 Object Oriented Programming

}

}
catch (InterruptedException e)

{
System.out.println(name + " interrupted.");

}
System.out.println(name + " exiting.");

}
}
class DemoJoin

{
public static void main(String args[])

{

NewThread ob1 = new NewThread("One");
NewThread ob2 = new NewThread("Two");
NewThread ob3 = new NewThread("Three");
System.out.println("Thread One is alive: "+ ob1.t.isAlive());
System.out.println("Thread Two is alive: "+ ob2.t.isAlive());
System.out.println("Thread Three is alive: "+ ob3.t.isAlive()); //
wait for threads to finish try {

System.out.println("Waiting for threads to finish.");
ob1.t.join();
ob2.t.join();
ob3.t.join();

}
catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

System.out.println("Thread One is alive: "+ ob1.t.isAlive());
System.out.println("Thread Two is alive: "+ ob2.t.isAlive());
System.out.println("Thread Three is alive: "+ ob3.t.isAlive());
System.out.println("Main thread exiting.");

Output:
New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]

Rohini college of Engineering and technology

15
CS8392 Object Oriented Programming

New thread: Thread[Three,5,main]

Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true Waiting for threads to finish. One: 5
Two: 5
Three: 5
One: 4
Two: 4

Three: 4

One: 3
Two: 3
Three: 3
One: 2
Two: 2
Three: 2
One: 1
Two: 1
Three: 1
Two exiting.

Three exiting.
One exiting.
Thread One is alive: false
Thread Two is alive: false Thread Three is alive: false Main thread
exiting.

4.3.5 Thread Priority
Each thread is assigned a priority. Based on the priority, the
thread will be scheduled for running. The threads of the same

priority are given equal treatment by the Java scheduler, they
share the processor on a first come, first serve basis.

The thread is set with the priority, we can use setPriority()
method.

Syntax:
ThreadName.setPriority(intNumber);

Rohini college of Engineering and technology

16
CS8392 Object Oriented Programming

The intNumber is an integer value to which the thread’s priority is

set. The Thread class defines several priority constants:

MIN_PRORITY = 1
NORM_PRORITY = 5
MAX_PRORITY = 10

Whenever multiple thread are ready for execution, the Java
system chooses the highest priority and executes it. If another
thread of a higher priority comes, the currently running thread is
preempted by the incoming thread. Now preempted thread thread
goes to runnable state.

Example Program:
class A extends Thread

{
public void run()

{
System.out.println("threadA started");
for(int i=1;i<=4;i++)

{
System.out.println("From Thread A:i="+i);

}
System.out.println("Exit from A");

}
}
class B extends Thread

{
public void run()

{
System.out.println("threadB started");
for(int j=1;j<=4;j++)

{
System.out.println("From Thread B: j="+j);

}
System.out.println("Exit from B");

}
}
class C extends Thread

Rohini college of Engineering and technology

17
CS8392 Object Oriented Programming

{
public void run()

{
System.out.println("threadC started");
for(int k=1;k<=4;k++)

{

System.out.println("From Thread C: k="+k); }

System.out.println("Exit from C");

}
}
class ThreadPriority

{
public static void main(String args[])

{
A threadA=new A();
B threadB=new B();
C threadC=new C();

threadC.setPriority(Thread.MAX_PRIORITY);
threadB.setPriority(threadA.getPriority()+1);

threadA.setPriority(Thread.MIN_PRIORITY);

System.out.println("Start thread A"); threadA.start();

System.out.println("Start thread B");
threadB.start();

System.out.println("Start thread C");
threadC.start();

System.out.println("End of main thread");

}
}

Output:
Start thread A
Start thread B

Rohini college of Engineering and technology

18
CS8392 Object Oriented Programming

Start thread C threadB started

From Thread B : j=1
From Thread B : j=2 threadC started
From Thread C : k=1
From Thread C : k=2
From Thread C : k=3 From Thread C : k=4 Exit from C
End of main thread
From Thread B : j=3
From Thread B : j=4 Exit from B threadA started
From Thread A : i=1

From Thread A : i=2
From Thread A : i=3 From Thread A : i=4 Exit from A

