Expression for Back E.M.F or Induced E.M.F. per Phase in synchronous motor

Case i) Under excitation, $E_{bph} < V_{ph}$. $Z_s = R_a + j X_s = |Z_s| \sqcup \theta \Omega \theta =$ $\tan^{-1}(X_s/R_a)$ $E_{Rph} \wedge I_{aph} = \theta$, I_a lags always by angle θ . $V_{ph} =$ Phase voltage applied $E_{Rph} = Back e.m.f.$ induced per phase $E_{Rph} = I_a x Z_s V$... per phase Let p.f. be $\cos\Phi$, lagging as under excited, V_{ph} $^{\wedge}$ $I_{aph} = \Phi$ Phasor diagram is shown in the Fig. 1. Applying cosine rule to Δ OAB, $(E_{bph})^2 = (V_{ph})^2 + (E_{Rph})^2 - 2V_{ph} E_{Rph} x (V_{ph})^2$ ERph) but $V_{ph} \wedge E_{Rph} = x = \theta - \Phi$ $(E_{bph})^2 = (V_{ph})^2 + (E_{Rph})^2 - 2V_{ph} E_{Rph} x (\theta - \Phi).....$.(1)where $E_{Rph} = I_{aph} \times Z_s$ Applying sine rule to Δ OAB, $E_{bph}/sinx$ $E_{Rph}/sin\delta$ $\frac{E_{Rph} \sin{(\theta - \phi)}}{E_{bph}}$ $\sin \delta = -$ (2) So once E_{bph} is calculated, load angle δ can be determined by using sine rule. **Case ii)** Over excitation, $E_{bph} > V_{ph}$ p.f. is leading in nature. $E_{Rph} \wedge I_{aph} = \theta$ $V_{ph} \wedge I_{aph} = \Phi$ The phasor diagram is shown in the Fig. 2.

Applying cosine rule to Δ OAB, $(E_{bph})^2 = (V_{ph})^2 + (E_{Rph})^2 - 2V_{ph} E_{Rph} x \cos(V_{ph} \wedge E_{Rph}) V_{ph} \wedge E_{Rph} =$ $\theta + \Phi$

- $(E_{bph})^2 = (V_{ph})^2 + (E_{Rph})^2 2 V_{ph} E_{Rph} \cos(\theta + \Phi)$ (3) ·. But $\theta + \Phi$ is generally greater than 90°
- $\cos(\theta + \Phi)$ becomes negative, hence for leading p.f., $E_{bph} > V_{ph}$. · • Applying sine rule to Δ OAB, $E_{bph}/sin(E_{Rph} \wedge V_{ph}) = E_{Rph}/sin\delta$ $\delta = \frac{E_{Rph} \sin(\theta + \phi)}{E_{bph}}$

... (4)

Hence load angle δ can be calculated once E_{bph} is known. Case iii) Critical excitation

In this case $E_{bph} \approx V_{ph}$, but p.f. of synchronous motor is unity.

$$\therefore \qquad \cos = 1 \qquad \therefore \qquad \Phi = 0^{\circ}$$

i.e. V_{ph} and I_{aph} are in phase and $E_{Rph} \wedge I_{aph} = \theta$

Phasor diagram is shown in the Fig. 3.

Figure 2.11. Phasor diagram for unity p.f. condition

Applying cosine rule to OAB,

$$(E_{bph})^2 = (V_{ph})^2 + (E_{Rph})^2 - 2V_{ph} E_{Rph} \cos \theta$$
.....(5)

Applying sine rule to OAB,

 $E_{bph}/sin\theta = E_{Rph}/sin\delta$

...

$$\sin \delta = \frac{E_{Rph} \sin \theta}{E_{bph}}$$

... (6)

where $E_{Rph} = I_{aph} \times Zs V$

> Thus in general the induced e.m.f. can be obtained by, $(E_{bph})^2 = (V_{ph})^2 + (E_{Rph})^2 - 2 V_{ph} E_{Rph} \cos(\theta \pm \phi)$ + sign for lagging p.f. while - sign for leading p.f.