Expression for Back E.M.F or Induced E.M.F. per Phasein synchronous motor

Case i) Under excitation, $\mathrm{E}_{\mathrm{bph}}<\mathrm{V}_{\mathrm{ph}}$.
$Z_{\mathrm{s}}=\mathrm{R}_{\mathrm{a}}+\mathrm{j} \mathrm{X}_{\mathrm{s}}=\left|\mathrm{Z}_{\mathrm{s}}\right|\llcorner\theta \Omega \theta=$
$\tan ^{-1}\left(\mathrm{X}_{\mathrm{s}} / \mathrm{R}_{\mathrm{a}}\right)$
$\mathrm{E}_{\mathrm{Rph}} \wedge \mathrm{I}_{\mathrm{aph}}=\theta, \mathrm{I}_{\mathrm{a}}$ lags always by angle $\theta . \mathrm{V}_{\mathrm{ph}}=$
Phase voltage applied
$\mathrm{E}_{\text {Rph }}=$ Back e.m.f. induced per phase

$$
\mathrm{E}_{\mathrm{Rph}}=\mathrm{I}_{\mathrm{a}} \times \mathrm{Z}_{\mathrm{s}} \mathrm{~V} \quad \ldots \text { per phase }
$$

Let p.f. be $\cos \Phi$, lagging as under excited, $\mathrm{V}_{\mathrm{ph}} \wedge$
$\mathrm{I}_{\text {aph }}=\Phi$
Phasor diagram is shown in the Fig. 1.

Applying cosine rule to $\triangle \mathrm{OAB}$,
$(E b p h)^{2}=\left(V_{p h}\right)^{2}+(E R p h)^{2}-2 \mathrm{Vph} E R p h x\left(V_{p h}\right.$
ERph) but $\mathrm{V}_{\mathrm{ph}} \wedge \mathrm{E}_{\text {Rph }}=\mathrm{x}=\theta-\Phi$
$\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \mathrm{E}_{\mathrm{Rph}} \mathrm{x}(\theta-\Phi)$
where $E_{\text {Rph }}=I_{\text {aph }} \times Z_{\mathrm{s}}$ Applying
sine rule to $\Delta \mathrm{OAB}, \mathrm{E}_{\text {bph }} / \sin \mathrm{x}=$
$\mathrm{E}_{\text {Rph }} / \sin \delta$
$\therefore \quad \sin \delta=\frac{\mathrm{E}_{\mathrm{Rph} \sin (\theta-\theta)}^{\mathrm{E}_{\mathrm{bph}}}}{}$
So once $\mathrm{E}_{\mathrm{bph}}$ is calculated, load angle δ can be determined by using sine rule.
Case ii) Over excitation, $\mathrm{E}_{\mathrm{bph}}>\mathrm{V}_{\mathrm{ph}}$ 0p $\mathrm{P}^{2} \mathrm{ra}_{2} 0111-$
p.f. is leading in nature.
$\mathrm{ERph}^{\wedge} \mathrm{I}_{\mathrm{aph}}=0$
$\mathrm{V}_{\mathrm{ph}} \wedge \mathrm{I}_{\text {aph }}=\Phi$
The phasor diagram is shown in the Fig. 2.

Figure 2.10. Phasor diagram for overexcited condition

Applying cosine rule to $\triangle \mathrm{OAB}$,
$\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \mathrm{E}_{\mathrm{Rph}} \mathrm{x} \cos \left(\mathrm{V}_{\mathrm{ph}} \wedge \mathrm{E}_{\mathrm{Rph}}\right) \mathrm{V}_{\mathrm{ph}} \wedge \mathrm{E}_{\mathrm{Rph}}=$
$\theta+\Phi$
$\therefore \quad\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \quad \mathrm{E}_{\mathrm{Rph}} \cos (\theta+\Phi)$
But $\theta+\Phi$ is generally greater than 90°
$\therefore \quad \cos (\theta+\Phi)$ becomes negative, hence for leading p.f., $\mathrm{E}_{\mathrm{bph}}>\mathrm{V}_{\mathrm{ph}}$.
Applying sine rule to $\Delta \mathrm{OAB}$,
$\mathrm{E}_{\mathrm{bph}} / \sin \left(\mathrm{E}_{\mathrm{Rph}} \wedge \mathrm{V}_{\mathrm{ph}}\right)=\mathrm{E}_{\mathrm{Rph}} / \sin \delta$
$\therefore \quad \sin \delta=\frac{\mathrm{E}_{\mathrm{Rqh}} \sin (\theta+\phi)}{\mathrm{E}_{\mathrm{bph}}}$
Hence load angle δ can be calculated once $\mathrm{E}_{\mathrm{bph}}$ is known.
Case iii) Critical excitation
In this case $\mathrm{E}_{\mathrm{bph}} \approx \mathrm{V}_{\mathrm{ph}}$, but p.f. of synchronous motor is unity.
$\therefore \quad \cos =1 \quad \therefore \quad \Phi=0^{\circ}$
i.e. V_{ph} and $\mathrm{I}_{\mathrm{aph}}$ are in phase and
$\mathrm{E}_{\mathrm{Rph}}{ }^{\wedge} \mathrm{I}_{\mathrm{aph}}=\theta$
Phasor diagram is shown in the Fig. 3.

Figure 2.11. Phasor diagram for unity p.f. condition

Applying cosine rule to OAB ,
$\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \mathrm{E}_{\mathrm{Rph}} \cos \theta$

Applying sine rule to OAB ,
$\mathrm{E}_{\mathrm{bph}} / \sin \theta=\mathrm{E}_{\mathrm{Rph}} / \sin \delta$
$\therefore \quad \sin \delta=\frac{\mathrm{E}_{\mathrm{Rph}} \sin \theta}{\mathrm{E}_{\mathrm{bph}}}$
where $\quad \mathrm{E}_{\mathrm{Rph}}=\mathrm{I}_{\mathrm{aph}} \times \mathrm{Zs}$ V

Thus in general the induced e.m.f. can be obtained by,

$$
\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \mathrm{E}_{\mathrm{Rph}} \cos (\theta \pm \phi)
$$

+ sign for lagging p.f. while - sign for leading p.f.

