
ROHINI College of Engineering and Technology

EC8791-Embedded and Realtime Systems

Analysis and Optimization of Program Size, Program

Validation and Testing

Analysis and Optimization of Program Size

Data provide an excellent opportunity for minimizing size because the data

are most highly dependent on programming style.

In data dominated applications, such as image or speech signal processing

applications, summing up the sizes of all the arrays is the most straightforward

way to get an upper bound of the memory requirement.

In the data dependency relations in the code are used to find the number of

array elements produced or consumed by each assignment, from which a memory

trace of upper and lower bounding rectangle as a function of time is found.

Care should be taken while designing buffer size. Data can sometimes be

packed, such as by storing several flags in a single word and extracting them by

using bit-level operations.

A very low-level technique for minimizing data is to reuse values. Data

buffers can often be reused at several different points in the program.

Minimizing the size of the instruction text of a program requires a mix of

high-level program transformations and careful instruction selection.

Encapsulating functions in subroutines can reduce program size when done

carefully.

Program Validation and Testing

Testing is an organized process to verify the behavior, performance, and

reliability of a device or system against designed specifications.

Debugging is the process of removing defects ("bugs") in the design phase

to ensure that the synthesized design, when manufactured will behave as

expected. Testing is a manufacturing step to ensure that the manufactured device

is defect free.

ROHINI College of Engineering and Technology

EC8791-Embedded and Realtime Systems

Embedded software development uses specialized compilers and

development software that offer means for debugging. Developers build

application software on more powerful computers and eventually test the

application in the target processing environment.

Testing methods are of two type :

1. Black-box testing : This method generates tests without looking at the

internal structure of the program.

2. White box testing : This method generate tests based on the program

structure. This method also called as Clear-box testing.

Black Box Testing

Black box testing is also called functional testing. It is testing that ignores

the internal mechanism of a system or component and focuses solely on the

outputs generated in response to selected inputs and execution conditions.

With black box testing, the software tester does not have access to the

source code itself. The code is considered to be a "big black box" to the tester

who can't see inside the box.

Black-box is based on requirements and functionality, not code.

Random tests form one category of black-box test. Random values are

generated with a given distribution.

The expected values are computed independently of the system, and then

the test inputs are applied. A large number of tests must be applied for the results

to be statistically significant, but the tests are easy to generate.

Using black box testing techniques, testers examine the high-level design

and the customer requirements specification to plan the test cases to ensure the

code does what it is intended to do.

Functional testing involves ensuring that the functionality specified in the

requirement specification works. System testing involves putting the new

program in many different environments to ensure the program works in typical

ROHINI College of Engineering and Technology

EC8791-Embedded and Realtime Systems

customer environments with various versions and types of operating systems

and/or applications.

Advantages :

1. Tests the final behavior of the software.

2. Can be written independent of software design.

3. Can be used to test different implementations with minimal changes.

Disadvantages :

1. Doesn't necessarily know the boundary cases.

2. Can be difficult to cover all portions of software implementation.

White Box Testing

Often called "structural" testing.

Knowing the internal workings of a product, test that all internal operations

are performed according to specifications and all internal components have been

exercised.

It involves tests that concentrate on close examination of procedural detail.

Logical paths through the software are tested.

White box testing focuses on the internal structure of the software code.

The white box tester knows what the code looks like and writes test cases by

executing methods with certain parameters.

Test cases exercise specific sets of conditions and loops.

A white-box testing technique that focuses exclusively on the validity of

loop constructs. Four different classes of loops exist : Simple loops, nested loops,

concatenated loops and unstructured loops.

Advantages :

1. Usually helps getting good coverage.

2. Good for ensuring boundary cases and special cases get tested.

Disadvantages :

1. Tests based on design might miss bigger picture system problems.

2. Tests need to be changed if implementation/algorithm changes.

3. Hard to test code that isn't there (missing functionality) with white box

testing.

