
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

MESSAGE-PASSING SYSTEMS VERSUS SHARED MEMORY SYSTEMS

 Communication among processors takes place via shared data variables, and control

variables for synchronization among the processors. The communications between the tasks in

multiprocessor systems take place through two main modes:

Message passing systems:

 This allows multiple processes to read and write data to the message queue without

being connected to each other.

 Messages are stored on the queue until their recipient retrieves them. Message

queues are quite useful for inter process communication and are used by most

operating systems.

Shared memory systems:

 The shared memory is the memory that can be simultaneously accessed by multiple

processes. This is done so that the processes can communicate with each other.

 Communication among processors takes place through shared data variables, and

control variables for synchronization among the processors.

 Semaphores and monitors are common synchronization mechanisms on shared

memory systems.

 When shared memory model is implemented in a distributed environment, it is

termed as distributed shared memory.

a) Message Passing Model b) Shared Memory Model

Fig : Inter-process communication models

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

Differences between message passing and shared memory models

Emulating message-passing on a shared memory system (MP → SM)

 The shared memory system can be made to act as message passing system. The

shared address space can be partitioned into disjoint parts, one part being assigned to

each processor.

 Send and receive operations care implemented by writing to and reading from the

destination/sender processor’s address space. The read and write operations are

synchronized.

 Specifically, a separate location can be reserved as the mailbox for each ordered pair

of processes.

Message Passing Distributed Shared Memory

Services Offered:

Variables have to be marshalled

from one process, transmitted and

unmarshalled into other variables at the

receiving process.

The processes share variables directly, so no

marshalling and unmarshalling. Shared

variables can be named, stored and accessed in

DSM.

Processes can communicate with other

processes. They can be protected from one

another by having private address spaces.

Here, a process does not have private address

space. So one process can alter the execution

of other.

This technique can be used in heterogeneous

computers.

This cannot be used to heterogeneous

computers.

Synchronization between processes is through

message passing primitives.

Synchronization is through locks and

semaphores.

Processes communicating via message passing

must execute at the same time.

Processes communicating through DSM

may execute with non-overlapping lifetimes.

Efficiency:

All remote data accesses are explicit and

therefore the programmer is always aware of

whether a particular operation is in-process or

involves the expense of communication.

Any particular read or update may or may not

involve communication by the underlying

runtime support.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

Emulating shared memory on a message-passing system (SM → MP)

 This is also implemented through read and write operations. Each shared location

can be modeled as a separate process. Write to a shared location is emulated by

sending an update message tothe corresponding owner process and read operation to

a shared location is emulated by sending a query message to the owner process.

 This emulation is expensive as the processes have to gain access to other process

memory location. The latencies involved in read and write operations may be high

even when using shared memory emulation because the read and write operations

are implemented by using network-wide communication.

PRIMITIVES FOR DISTRIBUTED COMMUNICATION

Blocking / Non blocking / Synchronous / Asynchronous

 Message send and message receive communication primitives are done through

Send() and Receive(), respectively.

 A Send primitive has two parameters: the destination, and the buffer in the user

space that holds the data to be sent.

 The Receive primitive also has two parameters: the source from which the data is to

be received and the user buffer into which the data is to be received.

There are two ways of sending data when the Send primitive is called:

 Buffered: The standard option copies the data from the user buffer to the kernel

buffer. The data later gets copied from the kernel buffer onto the network. For the

Receive primitive, the buffered option is usually required because the data may

already have arrived when the primitive is invoked, and needs a storage place in the

kernel.

 Unbuffered: The data gets copied directly from the user buffer onto the network.

Blocking primitives

 The primitive commands wait for the message to be delivered. The execution of the

processes is blocked.

 The sending process must wait after a send until an acknowledgement is made by the

receiver.

 The receiving process must wait for the expected message from the sending process

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 The receipt is determined by polling common buffer or interrupt

 This is a form of synchronization or synchronous communication.

 A primitive is blocking if control returns to the invoking process after the processing

for the primitive completes.

Non Blocking primitives

 If send is nonblocking, it returns control to the caller immediately, before the

message is sent.

 The advantage of this scheme is that the sending process can continue computing in

parallel with the message transmission, instead of having the CPU go idle.

 This is a form of asynchronous communication.

 A primitive is non-blocking if control returns back to the invoking process

immediately after invocation, even though the operation has not completed.

 For a non-blocking Send, control returns to the process even before the data is

copied out of the user buffer.

 For anon-blocking Receive, control returns to the process even before the datamay

have arrived from the sender.

Synchronous

 A Send or a Receive primitive is synchronous if both the Send() and Receive()

handshake with each other.

 The processing for the Send primitive completes only after the invoking processor

learns

 that the other corresponding Receive primitive has also been invoked andthat the

receive operation has been completed.

 The processing for the Receive primitive completes when the data to be received is

copied into the receiver’s user buffer.

Asynchronous

 A Send primitive is said to be asynchronous, if control returns back to the invoking

process after the data item to be sent has been copied out of the user-specified buffer.

 It does not make sense to define asynchronous Receive primitives.

 Implementing non -blocking operations are tricky.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 For non-blocking primitives, a return parameter on the primitive call returns a

system-generated handle which can be later used to check the status of completion of

the call.

 The process can check for the completion:

o checking if the handle has been flagged or posted

o issue a Wait with a list of handles as parameters: usually blocks until one of

the parameter handles is posted.

The send and receive primitives can be implemented in four modes:

 Blocking synchronous

 Non- blocking synchronous

 Blocking asynchronous

 Non- blocking asynchronous

Four modes of send operation

Blocking synchronous Send:

 The data gets copied from the user buffer to the kernel buffer and is then sent over the

network.

 After the data is copied to the receiver’s system buffer and a Receive call has been

issued, an acknowledgement back to the sender causes control to return to the process

that invoked the Send operation and completes the Send.

Non-blocking synchronous Send:

 Control returns back to the invoking process as soon as the copy of data from the user

buffer to the kernel buffer is initiated.

 A parameter in the non-blocking call also gets set with the handle of a location that the

user process can later check for the completion of the synchronous send operation.

 The location gets posted after an acknowledgement returns from the receiver.

 The user process can keep checking for the completion of the non-blocking synchronous

Send by testing the returned handle, or it can invoke the blocking Wait operation on the

returned handle

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

Blocking asynchronous Send:

 The user process that invokes the Send is blocked until the data is copied from the user’s

buffer to the kernel buffer.

Non-blocking asynchronous Send:

 The user process that invokes the Send is blocked until the transfer of the data from the

user’s buffer to the kernel buffer is initiated.

 Control returns to the user process as soon as this transfer is initiated, and a parameter in

the non-blocking call also gets set with the handle of a location that the user process can

check later using the Wait operation for the completion of the asynchronous Send.

Fig a) Blocking synchronous send and blocking receive Fig b) Non-blocking synchronous send and

blocking receive

Fig c) Blocking asynchronous send Fig d) Non-blocking asynchronous send

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 The asynchronous Send completes when the data has been copied out of the user’s buffer.

The checking for the completion may be necessary if the user wants to reuse the buffer from

which the data was sent.

Modes of receive operation

Blocking Receive:

The Receive call blocks until the data expected arrives and is written in the specified user

buffer. Then control is returned to the user process.

Non-blocking Receive:

 The Receive call will cause the kernel to register the call and return the handle of

a location that the user process can later check for the completion of the non-

blocking Receive operation.

 This location gets posted by the kernel after the expected data arrives and is

copied to the user-specified buffer. The user process can check for the completion

of the non-blocking Receive by invoking the Wait operation on the returned

handle.

Processor Synchrony

Processor synchrony indicates that all the processors execute in lock-step with their clocks

synchronized.

Since distributed systems do not follow a common clock, this abstraction is implemented using

some form of barrier synchronization to ensure that no processor begins executing the next step

of code until all the processors have completed executing the previous steps of code assigned to

each of the processors.

 Libraries and standards

There exists a wide range of primitives for message-passing. The message-passing interface

(MPI) library and the PVM (parallel virtual machine) library are used largely by the scientific

community

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Message Passing Interface (MPI): This is a standardized and portable message-passing

system to function on a wide variety of parallel computers. MPI primarily addresses the

message-passing parallel programming model: data is moved from the address space of

one process to that of another process through cooperative operations on each process.

 The primary goal of the Message Passing Interface is to provide a widely used standard

for writing message passing programs.

 Parallel Virtual Machine (PVM): It is a software tool for parallel networking of

computers. It is designed to allow a network of heterogeneous Unix and/or Windows

machines to be used as a single distributed parallel processor.

 Remote Procedure Call (RPC): The Remote Procedure Call (RPC) is a common model

of request reply protocol. In RPC, the procedure need not exist in the same address

space as the calling procedure. The two processes may be on the same system, or they

may be on different systems with a network connecting them.

 Remote Method Invocation (RMI): RMI (Remote Method Invocation) is a way that a

programmer can write object-oriented programming in which objects on different

computers can interact in a distributed network. It is a set of protocols being developed

by Sun's JavaSoft division that enables Java objects to communicate remotely with other

Java objects.

 Remote Procedure Call (RPC): RPC is a powerful technique for constructing

distributed, client-server based applications. In RPC, the procedure need not exist in the

same address space as the calling procedure. The two processes may be on the same

system, or they may be on different systems with a network connecting them. By using

RPC, programmers of distributed applications avoid the details of the interface with the

network. RPC makes the client/server model of computing more powerful and easier to

program.

Differences between RMI and RPC

RMI RPC

RMI uses an object oriented paradigm

where the user needs to know the object

and the method of the object he needs to

invoke.

RPC is not object oriented and does not

deal with objects. Rather, it calls specific

subroutines that are already established

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

With RPC looks like a local call. RPC

handles the complexities involved with

passing the call from the local to the

remote computer.

RMI handles the complexities of passing

along the invocation from the local to the

remote computer. But instead of passing

a procedural call, RMI passes a reference

to the object and the method that is being

called.

The commonalities between RMI and RPC are as follows:

 They both support programming with interfaces.

 They are constructed on top of request-reply protocols.

 They both offer a similar level of transparency.

 Common Object Request Broker Architecture (CORBA): CORBA describes a

messaging mechanism by which objects distributed over a network can communicate with each

other irrespective of the platform and language used to develop those objects. The data

representation is concerned with an external representation for the structured and primitive

types that can be passed as the arguments and results of remote method invocations in CORBA.

It can be used by a variety of programming languages.

