1.4 Mode Analysis for Optical Propagation Through Fibers

- To understand the general nature of light wave propagation in optical fiber. We first consider the construction of optical fiber.
- The innermost is the glass core of very thin diameter with refractive index of n_{1}.
- The glass core is surrounded by a cladding material with a slight lower refractive index n_{2}.
- The light wave can propagate along such a optical fiber.
- A single mode propagation is illustrated in Figure along with standard size of fiber.
- Single mode fibers are capable of carrying only one signal of a specific wavelength.
- In multimode propagation the light propagates along the fiber in zigzag fashion, provided it can undergo Total Internal Reflection (TIR) at the core cladding boundaries.
- Total internal reflection at the fiber wall can occur only if two conditions are satisfied.

$125 \mu \mathrm{~m}$

Condition 1 :

- The index of refraction of glass fiber must be slightly greater than the index of refraction of material surrounding the fiber (cladding).

If refractive index of glass fiber $=n_{1}$
and refractive index of cladding $=\mathrm{n}_{2}$
then $\mathrm{n}_{1}>\mathrm{n}_{2}$
Condition 2 : The angle of incidence $\left(\varphi_{1}\right)$ of light ray must be greater than critical angle (φ_{c}).

- A light beam is focused at one end of cable. The light enters the fibers at different angles.
- Figure shows the condition exist at the launching end of optic fiber. The light source is surrounded by air and the refractive index of air is $n_{0}=1$.
- Let the incident ray makes an angle φ_{0} with fiber axis.
- The ray enters into glass fiber at point P making refracted angle φ_{1} to the fiber axis, the ray is then propagated diagonally down the core and reflect from the core wall at point Q .
- When the light ray reflects off the inner surface, the angle of incidence is equal to the angle of reflection, which is greater than critical angle.

- In order for a ray of light to propagate down the cable, it must strike the core cladding interface at an angle that is greater than critical angle $\left(\varphi_{c}\right)$

Accepting Angle (φ_{0})

- Applying Snell's law to external incidence angle.

$$
n_{0} \sin \emptyset_{0}=n_{1} \sin \emptyset_{1}
$$

- The maximum value of external incidence angle for which light will propagate in the fiber.

$$
\emptyset_{0}(m a x)=\sin ^{-1}\left[\frac{\sqrt{n_{1}^{2}-n_{2}^{2}}}{n_{0}}\right]
$$

