2.4 REFLECTION AND TRANSMISSION OF EM WAVES VACUUM - NON CONDUCTING MEDIUM INTERFACE FOR NORMAL INCIDENCE

Let us consider a monochromatic (single frequency) uniform plane wave that travels through one medium (vacuum) and enters another medium (non-conducting) of infinite extent.

The uniform plane $E M$ wave propagating along x-direction in a vacuum medium $\left(\mu_{o}, \varepsilon_{o}\right)$ incident normally on the surface of a flat non-conducting medium permittivity, $\mu \neq \mu_{o}$ and permittivity, $\left.\neq \varepsilon_{0}\right)$.

Here the incoming EM wave is called the incident wave, the interface is an infinite plane at $x=0$, the region to the left of the interface is medium $1(x \leq 0)$ and the region to the right of the interface is medium $2(x \geq 0)$.

At the interface, a part of the incident EM wave will penetrate the boundary (interface) and continue its propagation

Here $\langle\vec{s}\rangle$ is the propagation vector (or) poynting vector
Another remainder of the wave is reflected at the interface and then propagates in the negative x direction. This wave is called the reflected wave

Thus both the incident and transmitted waves propagate in $+x$ direction. The reflected wave will propagate in $-x$ direction. So the incident and reflected waves are in medium 1 and the transmitted wave is in medium 2 .

Now by considering the electric field \vec{E} of the incident wave which is polarized in y direction (plane polarized) and has an amplitude E_{0} at the interface as shown in fig. 2.21.

If $\left(k_{1}=\left(1 / v_{1}\right)\right.$ is the propagation constant of this wave (with angular frequency ω and velocity equal to v_{1}) in medium-1, then the electric and magnetic field waves are represented as

$$
\vec{E}_{i}(x, t)=E_{0} \cos \left(\omega t-k_{1} x\right)
$$

and

$$
\begin{gather*}
\vec{B}_{i}(x, t)=\frac{E_{o}}{V_{1}} \cos \left(\omega t-k_{1} x\right), \ldots \tag{2}\\
\left(\because B_{o}=\frac{E_{o}}{v_{1}}\right)
\end{gather*}
$$

Then, the reflected waves are represented as,

$$
\vec{E}_{R}(x, t)=E_{1} \cos \left(\omega t+k_{1} x\right)
$$

and

$$
\begin{aligned}
& \overrightarrow{B_{R}}(x, t)=\frac{E_{1}}{v_{1}} \cos \left(\omega t+k_{1} x\right) \\
& \vec{E}_{T}(x, t)=E_{2} \cos \left(\omega t-k_{2} x\right)
\end{aligned}
$$

We know that $E_{o}=c B_{o}$

$$
\vec{B}_{T}(x, t)=\frac{E_{2}}{v_{2}} \cos \left(\omega t-k_{2} x\right)
$$

Here in eqns (3) and (4), the sign is reversed used in the wave number k to denote that this wave is propagating from the interface (boundary) along negative x direction (backward travelling wave). Also the wave numbers k_{1} and k_{2} are related to

$$
k_{1}=\frac{\omega}{v_{1}}
$$

and

$$
k_{2}=\frac{\omega}{v_{2}}
$$

where v_{1} and v_{2} are the velocities of $E M$ waves in medium- 1 and medium- 2 respectively.

The total instantaneous electric field \vec{E}_{y} for any value of x with medium 1 is equal to the sum of the incident and reflected waves, so

$$
\vec{E}_{y}(x, t)=E_{o} \cos \left(\omega t-k_{1} x\right)+E_{1} \cos \left(\omega t+k_{1} x\right)
$$

(or)

$$
\vec{E}_{y}(x, t)=\vec{E}_{i}(x, t)+\vec{E}_{R}(x, t)
$$

The total instantaneous electric field \vec{E}_{y} for any value of x in the medium-2 is

$$
\vec{E}_{y}(x, t)=E_{2} \cos \left(\omega t-k_{2} x\right)
$$

At the interface $x=0$, the boundary conditions require that the tangential components of \vec{E} and \vec{B} fields must be continuous.

Propagation of an Electromagnetic Wave

Fig. 2.22 (a) Electric field wave patterns

Fig. 2.22 (b) Magnetic field wave patterns
Since the waves are transverse, \vec{E} and \vec{B} fields are entirely tangential to the interface.
Hence at $x=0$, eqn. (9) and (10) are equal, so
$E_{0} \cos \left(\omega t-k_{1} x\right)+E_{1} \cos \left(\omega t-k_{1} x\right)=E_{2} \cos \left(\omega t-k_{2} x\right)$
as $x=0$, then

$$
E_{0} \cos (\omega t)+E_{1} \cos (\omega t)=E_{2} \cos (\omega t)
$$

(or)

$$
E_{o}+E_{1}=E_{2}
$$

Also at boundary $x=0$, as tangential components are continuous therefore

$$
\frac{d E_{i}}{d x}+\frac{d E_{R}}{d x}=\frac{d E_{T}}{d x}
$$

which yields

$$
-E_{o} k_{1} \sin (\omega t)-E_{1} k_{1} \sin (\omega t)=E_{2} k_{2} \sin (\omega t)
$$

(or)

$$
E_{o} k_{1}-E_{1} k_{1}=E_{2} k_{2}
$$

(or)

$$
k_{1}\left(E_{o}-E_{1}\right)=E_{2} k_{2},
$$

(or)

$$
E_{o}-E_{1}=E_{2} \cdot\left(\frac{k_{2}}{k_{1}}\right)
$$

As $k_{1}=\frac{\omega}{v_{1}}$ and $k_{2}=\frac{\omega}{v_{2}}$, then eqn. (16) becomes

$$
E_{o}-E_{1}=E_{2} \cdot\left(\frac{v_{1}}{v_{2}}\right)
$$

Adding eqns (13) and (17) gives

$$
\begin{aligned}
2 E_{o} & =E_{2}+E_{2}\left(\frac{v_{1}}{v_{2}}\right) \\
& =E_{2}\left(1+\frac{v_{1}}{v_{2}}\right) \\
E_{o} & =\left(\frac{E_{2}}{2}\right)\left(1+\frac{v_{1}}{v_{2}}\right)
\end{aligned}
$$

When medium- 1 is vacuum $v_{1}=c$, and $v_{2}=v$

$$
\therefore E_{o}=\left(\frac{E_{2}}{2}\right)\left(1+\frac{c}{v}\right)
$$

Subtracting eqn. (17) from eqn. (13) gives

$$
\begin{aligned}
& E_{1}=\left(\frac{E_{2}}{2}\right)\left(1-\frac{v_{1}}{v_{2}}\right) \\
& E_{1}=\left(\frac{E_{2}}{2}\right)\left(1-\frac{c}{v}\right)
\end{aligned}
$$

