
Rohini college of Engineering and Technology

13
CS 8392 Object Oriented Programming

1.4.7. Data Types in Java
Data type is a special keyword used to assignenough memory space for the data, in other
words Data type is used for on behalf of the data in main memory (RAM) of the computer.

In java, there are two types of data types
• Primitive data types

• Non-primitive data types

Figure 1: Classification of Data type

1.Primitive data types
Primitive data types are variables permits us to store only one value but they not at all
allows us to store multiple values of similar type. This is a data type whose variable can
contain maximum one value at a time.

Example:
int a; // valid

a=10; // valid
a=10, 20, 30; // invalid

There are eight primitive data types given by Java. Primitive data types are predefined by
the language and named through a keyword.

• Numeric primitives:short, int, long, float and double. These primitive data types can

https://en.wikibooks.org/wiki/Java_Programming/Keywords/short
https://en.wikibooks.org/wiki/Java_Programming/Keywords/int
https://en.wikibooks.org/wiki/Java_Programming/Keywords/long
https://en.wikibooks.org/wiki/Java_Programming/Keywords/float
https://en.wikibooks.org/wiki/Java_Programming/Keywords/double

Rohini college of Engineering and Technology

14
CS 8392 Object Oriented Programming

contain only numeric data. Operations related with such data types are those of easy
arithmetic (addition, subtraction, etc.) or of comparisons (is greater than, is equal to, etc.)
Example: double a=120.20;

double b=50.20;
double c= a+b;

• Textual primitives:byte and char. These primitive data types contain characters (that can
be Unicode alphabets or even numbers). Operations related with such types are those of
textual operation (comparing two words, joining characters to make words, etc.). though,
byte and char can also support arithmetic operations. Example: char a=’A’;

char b=’B’;
• Boolean and null primitives: boolean and null.

Example: boolean flag=TRUE ; _______ __

Data Type
Default
Value

Default
size

Range

boolean false 1 bit True or False only
char '\u0000' 2 byte 0 to 65,535
byte 0 1 byte -128 to 127
short 0 2 byte -32,768 to 32,767

int 0 4 byte -2,147,483,648 to 2,147,483,647
long 0L 8 byte -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
float 0.0f 4 byte 1.40129846432481707e-45 to

3.40282346638528860e+38
double 0.0d 8 byte 4.94065645841246544e-324d to

1.79769313486231570e+308d
Table : Primitive Data type with Memory Size

2. Non-Primitive Data Types

It is Used to store multiple values.Reference variables are produced using defined
constructors of the classes. They are used to contact objects. These variables are declared to be of
a particular type that cannot be changed. Class objects and various types of array variables come
below reference data type. Default value of any reference variable is null. A reference variable can
be used to refer any other object of the declared type or any compatible type.

Objects and Arrays are the reference or non-primitive data types in Java. They are so
called since they are handled “by reference” i.e. variables of their kind store the address of the
object or array is stored in a variable. They are passed by reference. For Ex:

char [] arr = { 'a', 'b', 'c', 'd' }; //'arr' stores the references for the 4 values

Simple Example for Data type:
public class PrimitiveDemo

{
public static void main(String[] args)

{

https://en.wikibooks.org/wiki/Java_Programming/Boolean_expressions
https://en.wikibooks.org/wiki/Java_Programming/Keywords/byte
https://en.wikibooks.org/wiki/Java_Programming/Keywords/char
https://en.wikibooks.org/wiki/Java_Programming/Keywords/byte
https://en.wikibooks.org/wiki/Java_Programming/Keywords/byte
https://en.wikibooks.org/wiki/Java_Programming/Keywords/char
https://en.wikibooks.org/wiki/Java_Programming/Keywords/boolean
https://en.wikibooks.org/wiki/Java_Programming/Literals/null

Rohini college of Engineering and Technology

15
CS 8392 Object Oriented Programming

byte b =100;
short s =123;
int v = 123543;
int calc = -9876345;
long amountVal = 1234567891;
float intrestRate = 12.25f;
double sineVal = 12345.234d;
boolean flag = true;
boolean val = false;
char ch1 = 88; // code for X
char ch2 = 'Y';
System.out.println("byte Value = "+ b);
System.out.println("short Value = "+ s);
System.out.println("int Value = "+ v);
System.out.println("int second Value = "+ calc);
System.out.println("long Value = "+ amountVal);
System.out.println("float Value = "+ intrestRate);
System.out.println("double Value = "+ sineVal);
System.out.println("boolean Value = "+ flag);
System.out.println("boolean Value = "+ val);
System.out.println("char Value = "+ ch1);
System.out.println("char Value = "+ ch2);

}

}

Output:

byte Value = 100 short Value = 123 int Value = 123543 int second Value = -

9876345

long Value = 1234567891

float Value = 12.25

double Value = 12345.234|

boolean Value = true

boolean Value = false char Value = X char Value = Y

The Primitive Types
The primitive types are also commonly referred to as simple types.Java defines eight primitive
types of data: byte, short, int, long, char, float, double, and boolean.
These can be put in four groups:
Integers This group includes byte, short, int, and long, which are for whole-valued signed
numbers.
Floating-point numbers This group includes float and double, which represent numbers with
fractional precision.

Rohini college of Engineering and Technology

16
CS 8392 Object Oriented Programming

Characters This group includes char, which represents symbols in a character set, like letters and
numbers.
Boolean This group includes boolean, which is a special type for representing true/false values.

Types of Literals:
a. Integer Literals
b. Floating-Point Literals
c. Boolean Literals
d. Character Literals
e. String Literals

The Java Keywords:
There are 50 keywords currently defined in the Java language.
These keywords, combined with the syntax of the operators and separators, form the foundation
of the Java language.
These keywords cannot be used as names for a variable, class, or method.

abstract continue for new switch

assert default goto package synchronized
boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile
const float native super while

Table : Java Keywords
1.4.8. VARIABLES
The variable is the fundamental unit of storage in a Java program. A variable is defined by the
mixture of an identifier, a type, and an optional initializer. All variables have a range, which
defines their visibility, and a lifetime. In Java, all variables should be declared before they can be
used. The fundamental form of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

• type can be any one java data type, or the name of a class or interface.
• The identifier is the name of the variable.
• You can initialize the variable by mentioning an equal sign and a value.
• The initialization expression must answer in a value of the same type as that mentioned for

the variable.
If we want to declare more than one variable of the specified type, we can use a comma separated
list. Here are several examples of variable declarations of various types.

int a, b, c; // declares three ints, a, b, and c. 6

Rohini college of Engineering and Technology

17
CS 8392 Object Oriented Programming

int d = 3, e, f = 5; // declares three more ints, initializing d and f.
byte z = 22; // initializes z.

Dynamic Initialization
Java permits variables to be initialized dynamically, any expression valid at the time the variable
is declared.
Example Program: Demonstrate dynamic initialization.
//Demonstrate dynamic initialization.
class DynInit
{
public static void main(String args[])
{
double a = 3.0, b = 4.0;
// c is dynamically initialized

double c = Math.sqrt(a * a + b * b);
System.out.println("Hypotenuse is " + c);

}
}

The Scope and Lifetime of Variables
Scope:

• Each variables used have been declared at the beginning of the main() method. Java allows
variables to be declared inside any block. A block is started with an opening curly brace and
closed by a closing curly brace.

• A block defines a scope. Thus, every time you begin a new block, you are creating a new
scope. A scope decides what objects are visible to other places of your program. It also
decides the lifetime of those objects.

• Many other programming languages define two general types of scopes: global and local.
In Java, there are two major scopes are defined in the class and those defined by a function.
Variables declared within a scope are not visible (that is, accessible) to program that is given
outside the scope.

• Nesting of scopes is possible. For example, Every time you create a block of code, you can
create a new, nested scope. Whenever it happens the outer scope encloses the internal
scope.

This means that objects declared on the outside scope will be visible to code within the internal
scope.

Example Program: Scope of Variables
// Demonstrate block scope.
class Scope

{
public static void main(String args[])

{
int x; // known to all code within main
x = 10;
if(x == 10)

Rohini college of Engineering and Technology

18
CS 8392 Object Oriented Programming

{
// start new scope
int y = 20;
// known only to this block 7

// x and y both known here.
System.out.println("x and y: " + x + " " + y);
x = y * 2;

}
// y = 100; // Error! y not known here
// x is still known here.
System.out.println("x is " + x);

}
}

Lifetime:
A variable declared inside a block will drop its value when the block is left. Thus, the life

span of a variable is limited to its scope. If a variable declaration have aninitialize, then that variable
can be reinitializedevery time and the block in which it is stated.

Example Program : Lifetime of a variable
// Demonstrate lifetime of a variable.
class LifeTime

{
public static void main(String args[])

{
int x;
for(x = 0; x < 3; x++)

{
int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}
}
}
Output:
y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

