UNIT-I

TESTING THE HYPOTHESIS

1.3 Small sample Tests (\mathbf{t} - Test)

PROCEDURE FOR TESTING OF HYPOTHESIS

- State the null hypothesis H_{0}
- Decide the alternative hypothesis H_{1} (i.e., one tailed or two tailed)
- Choose the level of significance α at 5% (or) 1%.
- Compute the test statistic $Z=\frac{t-E(t)}{\text { S.E of }(t)}$
- Compare the computed value of with the table value of $|Z|$ with the table value of Z and decide the acceptance or the rejection of H_{0}.
- If $|Z|<1.96, H_{0}$ is accepted at 5% level of significance.
- If $|Z|>1.96, H_{0}$ is rejected at 5% level of significance.
- If $|Z|<2.58, H_{0}$ is accepted at 1% level of significance.
- If $|Z|>2.58, H_{0}$ is rejected at 1% level of significance.
- For a single tail test (right tail or left tail) we compare the computed value of $|Z|$ with 1.645 (at 5\% level of significance) and 2.33 (at 1% level of significance) and accept or reject H_{0} accordingly.

TEST OF SIGNIFICANCE OF SMALL SAMPLES

When the size of the sample (n) is less than 30 , then that sample is called a small sample. The following are some important tests for small samples.
(i) Student's t - test
(ii) F - test
(iii) χ^{2} test

Test of significance of the difference between sample mean and population mean

The student's " t " is defined by the statistic
$t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n-1}}}$ Where $\bar{x}=$ sample mean
$\mu=$ population mean
$S=s . d$ of sample
$\mathrm{n}=$ sample size

Note:

If s. d of a sample is not given directly then, the static is given by $t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$
Where $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}, \quad S^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$

Working Rule:

Set the null hypothesis $H_{0}: \mu=$ a specified value
Set the alternative hypothesis $H_{1}: \mu \neq$ a specified value
we choose $\alpha=0.05(5 \%)$ (or) $0.01(1 \%)$ as the Level of significance
The test statistic is $t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n-1}}}$ with $v=n-1$ degrees of freedom.
If $|t|<t_{0.05} \quad H_{0}$ is accepted at 5% level of significance.
If $|t|>t_{0.05}, H_{0}$ is rejected at 5% level of significance

1. The mean lifetime of a sample of $\mathbf{2 5}$ bulbs is found as $\mathbf{1 5 5 0 h o u r s}$, with an S.D of $\mathbf{1 2 0}$ hours. The company ,manufacturing the bulbs claims that the average life of their bulbs is $\mathbf{1 6 0 0}$ hours. Is the claim acceptable at $\mathbf{5 \%}$ level of significance?

Solution:

Given $n=25, \bar{x}=1550, s=120, \mu=1600$
Set the null hypothesis $H_{0}: \mu=1600$
Set the alternative hypothesis $H_{1}: \mu \neq 1600$
Level of significance at 5\%
he test statistic is $t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n-1}}}$ with $v=n-1$ degrees of freedom.

$$
\begin{gathered}
t=\frac{1550-1600}{120 / \sqrt{24}}=-2.0412 \\
|t|=2.0412
\end{gathered}
$$

Critical value: At 5% level, the tabulated value of t_{α} is 2.064 for

$$
v=n-1=24
$$

Conclusion: Since $|t|=2.0412<2.064$
Hence Null Hypothesis H_{0} is accepted at 5\% level of significance.
i.e., The claim is acceptable.
2. Tests made on the breaking strength of 10 pieces of a metal gave the following results: $578,572,570,568,572,570,570,572,596,584 \mathrm{~kg}$. Test if the mean breaking strength of the wire can be assumed as 577 kg .
Solution:
Let us first compute sample mean \bar{x} and sample S . D and then if \bar{x} differs significantly from the population mean $\mu=577$

Where $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{5752}{10}=575.2$

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
578	2.8	7.84
572	-3.2	10.24
570	-5.2	27.04
568	-7.2	51.84
572	-3.2	10.24
570	-5.2	27.04
570	-5.2	27.04
572	-3.2	10.24
596	20.8	432.64
584	8.8	77.44
5752	0	681.6
$S^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{681.6}{10-1}=75.733$		

Set the null hypothesis $H_{0}: \mu=577$
Set the alternative hypothesis $H_{1}: \mu \neq 577$
Level of significance at 5\%
The test statistic is $t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$ with $v=n-1$ degrees of freedom.

$$
\begin{gathered}
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{572.2-577}{\sqrt{75.733} / \sqrt{10}}=-0.654 \\
|t|=0.654
\end{gathered}
$$

Critical value: At 5\% level, the tabulated value of t_{α} is 2.262 for

$$
v=n-1=9
$$

Conclusion: Since $|t|=0.654<2.262$
Hence Null Hypothesis H_{0} is accepted at 5\% level of significance.
The mean breaking strength of the wire can be assumed as 577 kg at 5% level of significance.
3. A machinist is making engine parts with axle diameter of 0.700 inch. A random sample of 10 parts shows a mean diameter of 0.742 inch with a S.D of 0.040 . Test whether the work is meeting the specification at 5% Los
Solution:
Given $n=10, \bar{x}=0.742, s=0.040, \mu=0.700$
Set the null hypothesis $H_{0}: \mu=0.700$
Set the alternative hypothesis $H_{1}: \mu \neq 0.700$
Level of significance at 5\%
The test statistic is $t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n-1}}}$ with $v=n-1$ degrees of freedom.

$$
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n-1}}}=\frac{0.742-0.700}{0.040 / \sqrt{9}}=3.15
$$

Critical value: At 5% level, the tabulated value of t_{α} is 2.26 for

$$
v=n-1=9
$$

Conclusion: Since $|t|=3.15>2.26$
Hence Null Hypothesis H_{0} is rejected at 5\% level of significance.

Test of significance of the difference between means of two small samples

- To test the significance of the difference between the mean $\overline{x_{1}}$ and $\overline{x_{2}}$ of samples of size n_{1} and n_{2}, use the statistic $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$
- Where $S=\sqrt{\frac{n_{1} S_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}-2}}$ with $n_{1}+n_{2}-2$ degrees of freedom
- (OR) $\boldsymbol{S}^{2}=\frac{\sum\left(x_{1}-\overline{x_{1}}\right)^{2}+\sum\left(x_{2}-\overline{x_{2}}\right)^{2}}{n_{1}+n_{2}-2}$ if s_{1} and s_{2} are not given directly
1.Two independent samples from normal pop's with equal variances gave the following results

Sample	Size	Mean	S.D
1	16	23.4	2.5
2	12	24.9	2.8

Test for the equations of means.

Solution:

Given $n_{1}=16, n_{2}=12, s_{1}=2.5, s_{2}=2.8, \overline{x_{1}}=23.4, \overline{x_{2}}=24.9$
Set the null hypothesis $H_{0}: \mu_{1}=\mu_{2}$
Set the alternative hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$

Level of significance at 5%
The test statistic is $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$

$$
\begin{gathered}
S=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{16 *(2.5)^{2}+12 *(2.8)^{2}}{16+12-2}}=\mathbf{2 . 7 3 2} \\
\Rightarrow t=\frac{23.4-24.9}{2.732 \sqrt{\frac{1}{16}+\frac{1}{12}}}=-\mathbf{1} .432
\end{gathered}
$$

$|t|=1.432$
Critical value: At $\mathbf{5 \%}$ level, the tabulated value of t_{α} is $\mathbf{2 . 0 5 6}$ for

$$
v=n_{1}+n_{2}-2=16+12-2=26
$$

Conclusion: Since $|t|=1.432<2.056$
Hence Null Hypothesis H_{0} is accepted at 5% level of significance.
i.e., There is no significant difference between their means
2. Two independent samples of 8 and 7 items respectively had the following values

Sample I : 9	13	11	11	15	9	12	14
Sample II : 10	12	10	14	9	8	10	

Is the difference between the means of the samples significant?
Solution:
Given $n_{1}=8, n_{2}=7$

x_{1}	$\begin{aligned} & d_{1} \\ & =\left(x_{1}-\overline{x_{1}}\right) \\ & =x_{1}-11.75 \end{aligned}$	$d_{1}{ }^{2}$ $=\left(x_{1}-\overline{x_{1}}\right)^{2}$	x_{2}	$\begin{aligned} & d_{2}=\left(x_{2}-\overline{x_{2}}\right) \\ & =x_{2}-10.43 \end{aligned}$	$d_{2}{ }^{2}=\left(x_{2}-\overline{x_{2}}\right)^{2}$
9	-2.75	7.5625	10	-0.43	0.1849
13	1.25	1.5625	2	1.57	2.4649
11	-0.75	0.5625	10	-0.43	0.1849
11	-0.75	1.5625	14	3.57	12.7449
15	3.25	10.5625	9	-1.43	2.0449
9	-2.75	7.5625	8	-2.43	5.9049
12	0.25	0.0625	10	-0.43	0.1849
14	2.25	5.0625			
	$\sum d_{1}=3.5$	$\sum d_{1}{ }^{2}=33.5$		$\sum d_{2}=-0.01$	$\begin{aligned} & \sum_{3} d_{2}^{2}=23.714 \end{aligned}$

Set the null hypothesis H_{0} : $\mu_{1}=\mu_{2}$
Set the alternative hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$
Level of significance at 5%

$$
\begin{aligned}
& \overline{x_{1}}=\frac{\sum x_{1}}{n}=\frac{94}{8}=11.75 \\
& \overline{x_{2}}=\frac{\sum x_{2}}{n}=\frac{73}{7}=10.43
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{S}^{2}=\frac{\sum\left(x_{1}-\overline{x_{1}}\right)^{2}+\sum\left(x_{2}-\overline{x_{2}}\right)^{2}}{n_{1}+n_{2}-2}=\frac{33.5+23.71}{8+7-2} \\
\boldsymbol{S}=\mathbf{2 . 0 9 7}
\end{gathered}
$$

The test statistic is $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$

$$
\Rightarrow t=\frac{11.75-10.43}{2.097 \sqrt{\frac{1}{8}+\frac{1}{7}}}=\mathbf{1 . 2 1 8}
$$

Critical value:At 5\% level, the tabulated value of t_{α} is $\mathbf{2 . 1 6}$ for

$$
v=n_{1}+n_{2}-2=\mathbf{8}+\mathbf{7}-\mathbf{2}=\mathbf{1 3}
$$

Conclusion: Since $|t|=1.432$ < 2.16
Hence Null Hypothesis H_{0} is accepted at 5% level of significance.
i.e., There is no significant difference between their means
3.Two independent samples of 8 and 7 items respectively had the following values

Sample I :	19	17	15	21	16	18	16	14
Sample II :	15	14	15	19	15	18	16	

Is the difference between the means of the samples significant?

Solution:

Given $n_{1}=8, n_{2}=7$
\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline x_{1} & \begin{array}{l}d_{1} \\
=\left(x_{1}-\overline{x_{1}}\right) \\
=x_{1}-11.75\end{array} & \begin{array}{l}d_{1}{ }^{2} \\
=\left(x_{1}-\overline{x_{1}}\right)^{2}\end{array} & \begin{array}{l}x_{2} \\
19\end{array} & 2 & 4\end{array}
$$ \begin{array}{l}d_{2}

=\left(x_{2}-\overline{x_{2}}\right)

=x_{2}-10.43\end{array}\right) \left.~\)\begin{tabular}{l}
$d_{2}{ }^{2}\left(x_{2}-\overline{x_{2}}\right)^{2}$

 \right\rvert\,

\hline 17 \& 0
\end{tabular}

16	-1	1	16	0	0
14	-3	9			
136	0	36	112	0	20

Set the null hypothesis $H_{0}: \mu_{1}=\mu_{2}$
Set the alternative hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$
Level of significance at $\mathbf{5 \%}$

$$
\begin{gathered}
\overline{x_{1}}=\frac{\sum x_{1}}{n}=\frac{136}{8}=17 \\
\overline{x_{2}}=\frac{\sum x_{2}}{n}=\frac{112}{7}=16 \\
S^{2}=\frac{\sum\left(x_{1}-\overline{x_{1}}\right)^{2}+\sum\left(x_{2}-\overline{x_{2}}\right)^{2}}{n_{1}+n_{2}-2}=\frac{36+20}{8+7-2}=4.3076
\end{gathered}
$$

$$
S=2.0754
$$

The test statistic is $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$

$$
\Rightarrow t=\frac{17-16}{2.0754 \sqrt{\frac{1}{8}+\frac{1}{7}}}=0.9309
$$

Critical value:At 5\% level, the tabulated value of t_{α} is $\mathbf{2 . 1 6}$ for

$$
v=n_{1}+n_{2}-2=\mathbf{8}+\mathbf{7 - 2}=\mathbf{1 3}
$$

Conclusion: Since $|t|=0.9309<2.16$
Hence Null Hypothesis H_{0} is accepted at 5% level of significance.
i.e., There is no significant difference between their means.

