1.6.1. PROBLEMS UNDER BASIS

Let V be a vector space with $\operatorname{dim}(V)=n$. Then any basis of V contains n elements.

Let β be a set with cardinality(number of elements) $|\beta|$.

- If $|\beta|<n$ or $|\beta|>n$, then S does not form a basis of V.
- If β is a linearly independent set in V with $|\beta|=n$, then β forms a basis in V.

Example. Determine whether $(1,1,1),(1,0,1)$ forms a basis of R^{3}
Sol: Since $\operatorname{dim}\left(R^{3}\right)=3$, any basis of R^{3} contains three elements. Let $\beta=$ $\{(1,1,1),(1,0,1)\}$. Since β contains two elements, β does not form a basis of R^{3} 。

Example 80. Show that the sets of vectors
$\{(1,2,1),(3,1,5),(-1,0,1),(1,-1,2)\}$ do not form a basis for $V_{3}(R)$.
Sol: Since $\operatorname{dim}\left(V_{3}(R)\right)=3$, any basis of $V_{3}(R)$ contains three elements.
Let $\beta=\{(1,2,1),(3,1,5),(-1,0,1),(1,-1,2)\}$. Since β contains four elements, does not form a basis of $V_{3}(R)$.

Example Verify the vectors $(1,-1,2),(1,-2,1),(1,1,4)$ in R° forms a basis of R^{3}.

Sol: Let $\beta=\{(1,-1,2),(1,-2,1),(1,1,4)\}$
$\operatorname{dim}\left(R^{3}\right)=3$, which is finite.
In R^{3}, any independent set with three elements is a basis of R^{3}.
Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 1 & -2 & 1 \\ 1 & 1 & 4\end{array}\right]$
$|A|=\left|\begin{array}{ccc}1 & -1 & 2 \\ 1 & -2 & 1 \\ 1 & 1 & 4\end{array}\right|$
$=1(-8-1)+1(4-1)+2(1+2)=0$
$\therefore \beta$ is a linearly dependent set in R^{3}.
$\therefore \beta$ does not form a basis of R^{3}.
Example. Verify the vectors $(1,2,0),(2,3,0),(8,13,0)$ of R^{3} is a basis of \boldsymbol{R}^{3}
Sol: Let $\beta=\{(1,2,0),(2,3,0),(8,13,0)\}$
$\operatorname{dim}\left(R^{3}\right)=3$, which is finite.
In R^{3}, any independent set with three elements is a basis of \mathbb{R}^{3}.
Let $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 3 & 0 \\ 8 & 13 & 0\end{array}\right]$
$|A|=\left|\begin{array}{ccc}1 & 2 & 0 \\ 2 & 3 & 0 \\ 8 & 13 & 0\end{array}\right|=0$
$\therefore \beta$ is a linearly dependent set in R^{3}.
$\therefore \beta$ is not a basis of R^{3}
Example Verify the vectors $(2,1,0),(-3,-3,1),(-2,1,-1)$ in R^{3} basis of R^{3}
Sol: Let $\beta=\{(2,1,0),(-3,-3,1),(-2,1,-1)\}$.
$\operatorname{dim}\left(R^{3}\right)=3$, which is finite.
In R^{3}, any independent set with three elements is a basis of R^{3}.
Let $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ -3 & -3 & 1 \\ -2 & 1 & -1\end{array}\right]$
$|A|=\left|\begin{array}{ccc}2 & 1 & 0 \\ -3 & -3 & 1 \\ -2 & 1 & -1\end{array}\right|=-1 \neq 0$
$\therefore \beta$ is a linearly independent set in R^{3}.
$\therefore \beta$ is a basis of R^{3}.
Example. Check whether the following are basis for the space R^{3}
(a) $\{(1,1,-1),(2,3,4),(4,1,-1),(0,1,-1)\}$
(b) $\{(1,1,-1),(0,3,4),(0,0,-1)\}$
(C) $\{(1,2,0),(0,1,-1)\}$

Sol:
$\operatorname{dim}\left(R^{3}\right)=3$, which is finite.
In R^{3}, any independent set with three elements is a basis for R^{3}.
(a) $\beta=\{(1,1,-1),(2,3,4),(4,1,-1),(0,1,-1)\}$

Since β is contains four elements, it is not a basis for R^{3}.
(b) $\beta=\{(1,1,-1),(0,3,4),(0,0,-1)\}$

The set contains three elements

Let $v_{1}=(1,1,-1), v_{2}=(0,3,4), v_{3}=(0,0,-1)$
To prove S is a basis we have to prove S is a linearly independent.

Let $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 3 & 4 \\ 0 & 0 & -1\end{array}\right]$
$|A|=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 3 & 4 \\ 0 & 0 & -1\end{array}\right]=-3 \neq 0$
$\therefore \beta$ is linearly independent in R^{3}
$\Rightarrow \beta$ is a basis in R^{3}
(C) $\beta=\{(1,2,0),(0,1,-1)\}$

Since the set contains two elements, it does not form a basis in R^{3}.
Example 85. Determine $\left\{1+2 x+x^{2}, 3+x^{2}, x+x^{2}\right\}$ is a basis for $P_{2}(R)$. Sol: $\operatorname{dim} P_{2}(R)=3$, which is finite. In $P_{2}(R)$, any independent set with three elements is a basis.

Given $v_{1}=1+2 x+x^{2}, v_{2}=3+x^{2}, v_{3}=x+x^{2}$
The vector equation is

$$
\begin{gathered}
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=0 \\
\alpha_{1}\left(1+2 x+x^{2}\right)+\alpha_{2}\left(3+x^{2}\right)+\alpha_{3}\left(x+x^{2}\right)=0 \\
\left(\alpha_{1}+3 \alpha_{2}\right)+\left(2 \alpha_{1}+\alpha_{3}\right) x+\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) x^{2}=0
\end{gathered}
$$

Equating the like terms, we get

$$
\begin{gathered}
\alpha_{1}+3 \alpha_{2}=0 \\
2 \alpha_{1}+\alpha_{3}=0 \\
a_{1}+\alpha_{2}+\alpha_{3}=0
\end{gathered}
$$

Let A be the coefficients matrix,
$\therefore A=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$
$|A|=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]=-4 \neq 0$
the system of homogenous equations have only the trivial solution
$\alpha_{1}=0, \alpha_{2}=0, \alpha_{3}=0$
$\therefore v_{1}, v_{2}, v_{3}$ are linearly independent
Hence v_{1}, v_{2}, v_{3} is a basis of $P_{2}(R)$
Therefore $\left\{1+2 x+x^{2}, 3+x^{2}, x+x^{2}\right\}$ is a basis over R.
Example 86. Let $V=P_{2}(R)$ and. $\beta=\left\{1,1+x, 1+x+x^{2}\right\}$. Check whether S forms a basis in V.

Sol: $\operatorname{dim} P_{2}(R)=3$, which is finite.
In $P_{2}(R)$, any independent set with three elements is a basis.

Given $v_{1}=1, v_{2}=1+x, v_{3}=1+x+x^{2}$
The vector equation is
$\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=0$
$\alpha_{1}(1)+\alpha_{2}(1+x)+\alpha_{3}\left(1+x+x^{2}\right)=0$
$\alpha_{3}+\alpha_{1}+\alpha_{2}+\alpha_{2} x+\alpha_{3} x+\alpha_{3} x^{2}=0 x^{2}+0 x+0$
$\left(\alpha_{3}+\alpha_{1}+\alpha_{2}\right)+\left(\alpha_{2}+\alpha_{3}\right) x+\alpha_{3} x^{2}=0 x^{2}+0 x+0$

Equating the like terms, we get
$\alpha_{3}+\alpha_{1}+\alpha_{2}=0$
$\alpha_{2}+\alpha_{3}=0$
$\alpha_{3}=0$
(2) $\Rightarrow \alpha_{2}=0$
(1) $\Rightarrow \alpha_{1}=0$
$\therefore \beta$ is linearly independent set in $P_{2}(R)$,
Therefore β is a basis in $P_{2}(R)$,
Example 87. If the vectors $\{u, v, w\}$ form a basis for R^{3}, show that the vectors $\{u, u-w, u+v-2 w\}$ also forms a basis for R^{3}.

Sol: $\operatorname{dim}\left(R^{3}\right)=3$, which is finite.
In R^{3}, any independent set with three elements is a basis for R^{3}.
Let $\beta=\{u, v, w\}$ and $\beta_{1}=\{u u-w, u+v-2 w\}$
Given β forms a basic for R^{3}.
$\therefore \beta$ is a linearly independent set in R^{3}.

In a finite dimensional vector space, any two bases has same number of elements.

Also in a finite dimensional vector space, any independent set with number elements $\operatorname{dim}(V)$ is a basis.

To prove β_{1} is a basis for R^{3}, it is enough to prove β_{1} is a linearly independent set. The vector equation is
$\alpha_{1} u+\alpha_{2}(u-w)+\alpha_{3}(u+v-2 w)=0$
$\alpha_{1} u+\alpha_{2} u-\alpha_{2} w+\alpha_{3} u+\alpha_{3} v-2 \alpha_{3} w=0$
$\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) u+\alpha_{3} v+\left(-\alpha_{2}-2 \alpha_{3}\right) w=0$

Since u, v and w are linearly independent,
$\alpha_{1}+\alpha_{2}+\alpha_{3}=0$
$\alpha_{3}=0$
$\alpha_{2}-2 \alpha_{3}=0$
(2) $\Rightarrow-\alpha_{2}-2(0)=0$
$\alpha_{2}=0$
(1) $\Rightarrow \alpha_{1}=0$
$\therefore \alpha_{1} u+\alpha_{2}(u-w)+\alpha_{3}(u+v-2 w)=0 \Rightarrow \alpha_{1}=0, \alpha_{2}=0, \alpha_{3}=0$
$\therefore \beta_{1}$ is a linearly independent set.
Hence β_{1} is a basis of R^{3}.

$$
=\left[\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{3} & \alpha_{4}
\end{array}\right]
$$

Equating the like terms, we get
$\alpha_{1}=2$
$\alpha_{2}=3$
$\alpha_{3}=4$
$\alpha_{4}=-7$

The coordinate of A relative to the usual basis is (2,3,4, -7).

1.6.2. PROBLEMS UNDER BASIS AND DIMENSION OF A SUBSPACE

Let W be a subspace of a vector space V over F. To find the basis dimension of

- From W, find linear span of W. Let it be β.
- Check β is linearly independent or not.
- If β is linearly independent set, then β forms a basis in W.
- $\operatorname{dim}(W)=|\beta|$

Example 91. Find the dimension of the subspace W of the vector space R^{3} over
R if $W=\{(a, 0,0) / a \in R\}$
Sol: Let $v \in W$. Then
$v=(a, 0,0)=a(1,0,0)$
$\therefore \beta=\{(1,0,0)\}$ spans \underline{W}.
Any set with one element is linearly independent
$\therefore B$ is a linearly independent set in W.
$\therefore B=\{(1,0,0)\}$ is a basis of W.
$\therefore \operatorname{dim}(W)=1$
Example 92. Find the dimension of the subspace W of the vector space R^{3} over
R, if $W=\left\{\left(a_{1}, a_{2}, a_{3}\right) /\left(2 a_{1}-7 a_{2}+a_{3}=0\right)\right\}$
Sol: $W=\left\{\left(a_{1}, a_{2}, a_{3}\right) /\left(2 a_{1}-7 a_{2}+a_{3}=0\right)\right\}$
Given $2 a_{1}-7 a_{2}+a_{3}=0$

$$
\Rightarrow a_{3}=-2 a_{1}+7 a_{2}
$$

Let $v \in W$. Then
$v=\left(a_{1}, a_{2}, a_{3}\right)$
$\left(a_{1}, a_{2}, a_{3}\right)=a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1)$
$=a_{1}(1,0,0)+a_{2}(0,1,0)+\left(-2 a_{1}+7 a_{2}\right)(0,0,1)$
$=a_{1}(1,0,0)+a_{2}(0,1,0)-2 a_{1}(0,0,1)+7 a_{2}(0,0,1)$
$=\left(a_{1}, 0,0\right)+\left(0, a_{2}, 0\right)+\left(0,0,-2 a_{1}\right)+\left(0,0,7 a_{2}\right)$
$=\left(a_{1}, 0,-2 a_{1}\right)+\left(0, a_{2}, 7 a_{2}\right)$
$=a_{1}(1,0,-2)+a_{2}(0,1,7)$
$\therefore \beta=\{(1,0,-2),(0,1,7)\}$ spans W i.e., $L(\beta)=W$

Next we prove that B is a linearly independent set in W.

Consider the vector equation
$a_{1} v_{1}+a_{2} v_{2}=0$
$a_{1}(1,0,-2)+a_{2}(0,1,7)=0$
$\left(a_{1}, a_{2},-2 a_{1}+7 a_{2}\right)=0$
$\Rightarrow a_{1}=a_{2}=0$
$\therefore \beta$ is a linearly independent set in W.
$\therefore \beta=\{(1,0,-2),(0,1,7)\}$ is a basis of W
Since the basis contains two elements, $\operatorname{dim}(W)=2$
Example 93. Find the dimension of the subspace W of the vector space $F^{!}$over
F, if $W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) / a_{1}-a_{3}+a_{4}=0\right\}$
Sol: $W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) / a_{1}-a_{3}+a_{4}=0\right\}$
Given $a_{1}-a_{3}+a_{4}=0$

$$
\Rightarrow a_{4}=a_{3}-a_{1}
$$

Let $v \in W$. Then
$v=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$
$\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$
$=a_{1}(1,0,0,0,0)+a_{2}(0,1,0,0,0)+a_{3}(0,0,1,0,0)+a_{4}(0,0,0,1,0)$
$=a_{1}(1,0,0,0,0)+a_{2}(0,1,0,0,0)+a_{3}(0,0,1,0,0)+\left(a_{3}-a_{1}\right)(0,0,0,1,0)+$ $a_{5}(0,0,0,0,1)$

$$
\begin{aligned}
= & \left.a_{1}(1,0,0,0,0)+a_{2}(0,1,0,0,0)+a_{3} \overline{(0,0}, 1,0,0\right)+a_{3}(0,0,0,1,0) \\
& \quad-a_{1}(0,0,0,1,0) \\
& +a_{5}(0,0,0,0,1) \\
= & a_{1}(1,0,0,-1,0)+a_{2}(0,1,0,0,0)+a_{3}(0,0,1,1,0)+a_{5}(0,0,0,0,1)
\end{aligned}
$$

$\left.\therefore \beta=a_{1}(1,0,0,-1,0),(0,0,-1,0),(0,1,0,0,0),(0,0,1,1,0),(0,0,0,0,1)\right\}$ spans
W

$$
\text { i.e., } L(\beta)=W
$$

Next we prove that β is a linearly independent set in W.
Consider the vector equation
$a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}=0$
$a_{1}(1,0,0,-1,0)+a_{2}(0,1,0,0,0)+a_{3}(0,0,1,1,0)+a_{4}(0,0,0,0,1)=0$
$\left(a_{1}, a_{2}, a_{3},-a_{1}+a_{3}, a_{4}\right)=0$
$\Rightarrow a_{1}=a_{2}=a_{3}=a_{4}=0$
$\therefore \beta$ is a linearly independent set in W.
$\therefore \beta=\{(1,0,0,-1,0),(0,1,0,0,0),(0,0,1,1,0),(0,0,0,0,1)\}$ is a basis of W.
Since the basis contains four elements, $\operatorname{dim}(W)=4$.
Example 94. Find the dimension of the subspace W of the vector space F^{5}
over R, if $W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) / a_{2}=a_{3}=a_{4}, a_{1}+a_{5}=0\right\}$
Sol: $W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) / a_{2}=a_{3}=a_{4}=0, a_{1}+a_{5}=0\right\}$
Given $a_{1}+a_{5}=0$
$\Rightarrow a_{5}=-a_{1}$
Also given $a_{2}=a_{3}=a_{4}$
$\therefore a_{3}=a_{2}$ and $a_{4}=a_{2}$
Let $v \in W$. Then

$$
\begin{aligned}
& v=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \\
& \left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \\
& \quad=a_{1}(1,0,0,0,0)+a_{2}(0,1,0,0,0)+a_{3}(0,0,1,0,0)+a_{3}(0,0,0,1,0)+
\end{aligned}
$$

$$
a_{5}(0,0,0,0,1)
$$

$$
\begin{gathered}
=a_{1}(1,0,0,0,0)+a_{2}(0,1,0,0,0)+a_{2}(0,0,1,0,0)+a_{2}(0,0,0,1,0) \\
-a_{1}(0,0,0,0,1)=a_{1}(1,0,0,0,-1)+a_{2}(0,1,1,1,0)
\end{gathered}
$$

$\beta=\{(1,0,0,0,-1),(0,1,1,1,0)\}$ spans W
i.e., $L(\beta)=W$

Next we prove that β is a linearly independent set in W.
Consider the vector equation
$a_{1} v_{1}+a_{2} v_{2}=0$
$a_{1}(1,0,0,0,-1)+a_{2}(0,1,1,1,0)=0$
$\left(a_{1}, a_{2}, a_{2}, a_{2},-a_{1}\right)=0$
$\Rightarrow a_{1}=a_{2}=0$
$\therefore \beta$ is a linearly independent set in W.
$\therefore \beta=\{(1,0,0,0,-1),(0,1,1,1,0)\}$ is a basis of W. Since the basis contains two elements, $\operatorname{dim}(W)=2$

Example 95. Find the dimension of the subspace W of the vector space R^{3} over R, if $W=\{(a, b, c): 2 a+3 b=c ; 7 c+9 b=a\}$

Sol:
$W=\{(a, b, c): 2 a+3 b=c ; 7 c+9 b=a\}$

Given
$2 a+3 b=c$
$2 a+3 b-c=0$

Also given
$7 c+9 b=a$
$a-9 b-7 c=0$

Solve (1) and (2)
$\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & -9 & -7\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=0$
Let $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & -9 & -7\end{array}\right]$
$\sim\left[\begin{array}{ccc}2 & 3 & -1 \\ 0 & -21 & -12\end{array}\right] R_{2} \rightarrow R_{2}-R_{1}$
$\left|\begin{array}{cc}2 & 3 \\ 0 & -21\end{array}\right|=-42 \neq 0$
$R(A)=2<$ the number of unknowns $=3$
Therefore the system has an infinite number of solutions.
From the last row, we get
$-21 b-12 c=0$
$-21 b=12 c$
$b=-\frac{4}{7} c$

Let $c=k$
$\therefore b=-\frac{4}{7} k$

From the first equation, we get
$2 a+3 b-c=0$
$2 a-\frac{12}{7} k-k=0$
$2 a=\frac{19}{7} k$
$a=\frac{19}{14} k$
where k is a parameter
$\left.W=\left\{\left(\frac{19}{14} k,-\frac{4}{7} k, k\right)\right\}: k \in R\right\}$
$\left.=\left\{\left(\frac{19}{14},-\frac{4}{7}, 1\right) k\right\}: k \in R\right\}$
$\therefore \beta=\left\{\left(\frac{19}{14},-\frac{4}{7}, 1\right)\right\}$ spans W.
i.e., $L(\beta)=W$

Any set with one non vector is linearly independent
$\therefore \beta$ is a linearly independent set in $W . \therefore \beta=\left\{\left(\frac{19}{14},-\frac{4}{7}, 1\right)\right\}$ is a basis of W.
Since the basis contains one element, $\operatorname{dim}(W)=1$

Example(96) Find the dimension of the subspace W of the vector space
$M_{2 \times 2}(R)$ over R, if $\left.W=\left\{\left[\begin{array}{ll}\boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right]: \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}+\boldsymbol{d}\right\}=\mathbf{0}\right\}$
Sol: $W=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a+b+c+d\right\}$
Given
$a+b+c+d=0$
$d=-a-b-c$.

Let $v \in W$. Then
$v=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] }=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
&=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+(-a-b-c)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
&=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]-a\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]-b\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]-c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
&=a\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+b\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]+c\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right] \\
& \therefore \beta=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\right\} \text { spans } W . \\
& \text { i.e., } L(\beta)=W
\end{aligned}
$$

Next we prove that β is a linearly independent set in W.
Consider the vector equation

$$
\begin{array}{r}
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0 \\
a_{1}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+a_{2}\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]+a_{3}\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]=0 \\
{\left[\begin{array}{cc}
a_{1} & a_{2} \\
a_{3} & -a_{1}-a_{2} \\
-a_{3}
\end{array}\right]=0} \\
\Rightarrow a_{1}=a_{2}=a_{3}=0
\end{array}
$$

$\therefore \beta$ is a a linearly independent set in W.
$\therefore \beta=\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right]\right\}$ is a basis of W.
Since the basis contains three elements, $\operatorname{dim}(W)=3$

GINEER/N ${ }_{C}$

OBSERVE OPTMIIZE OUTSPREAD

