

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-1 EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

an array of n elements, where each

articular key(number) in the array.

Output

How many numbers: 6
Enter the array elements:
21
33
46
52
27
Enter the key to be searched: 73
NOT FOUND

LINEAR SEARCH

Searching an element within an array

Consider element is a key (e.g., a number). The

task is to

The simplest method is a sequential search or linear search. The idea is to

simply search the array, element by element, from the beginning until the key is

found or the end of the list is reached. If found, the corresponding position in the

array is printed; otherwise, a message will have to be displayed that the

key(number) is not found. Now, the implementation of the program will be

Program:

#include

<stdio.h>

#include

<stdlib.h> int

main()
{
int n,i,key, FOUND=0, a[30]; // array

declaration printf(“\n How many

numbers:”); scanf(“%d”,&n); // array size

printf(“\n Enter the array elements:

\n”); for(i=0 ; i<n; i++)
{
scanf(“%d”, &a[i]);
}
printf(“\n Enter the key to be
searched: ”); scanf(“%d”,&key);

for(i=0 ; i<n; i++) // searching an element in an

array if(a[i] == key)
{
printf(“\n Found at
%d”,i); FOUND=1;
}
if(FOUND = = 0)
printf(“\n NOT
FOUND...”); return 0;

}

Output

How many numbers: 6
Enter the array elements:
21
33
46
52
27
Enter the key to be searched: 52
Found at 3

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-1 EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

BINARY SEARCHING

In Binary searching the drawbacks of sequential search can be

eliminated The binary search halves the size of the list to search

in each Iteration

Logic : Binary search can be explained simply by the analogy of searching for a

page in a book. Suppose a reader is searching for page 90 in a book of 150 pages.

The reader would first open the book at random towards the latter half of the

book. If the page number is less than 90, the reader would open at a page to the

right; if it is greater than 90, the reader would open at a page to the left, repeating

the process till page 90 was found.

Binary search requires sorted data (in ascending order) to operate on.

In binary search, the following procedure is implemented.
 Look at the middle element of the list.
 If it is the value being searched, then the job is done.
 If the value that is being searched is smaller than the middle element,

then continue with the bottom half of the list.

 If the value that is being searched is larger than the middle element,

then continue with the top half of the list.

Eg:-Depiction of binary search algorithm (the number to be searched is greater

than mid value)

Algorithm: The algorithm determines the position of T in the LIST.

1. START
2. PRINT “ENTER THE NO. OF ELEMENTS IN THE ARRAY”
3. INPUT

N 4. I=0
5. PRINT “ENTER ARRAY ELEMENT”
6. INPUT

LIST(I) 7.

I=I+1

8. IF I<N THEN GOTO STEP 5
9. PRINT “ENTER THE ELEMENT TO SEARCH”
10. INPUT T
11. HIGH = N - 1
12. LOW = 0

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-1 EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

13. FOUND = 0
14. MID = (HIGH + LOW)/ 2
15. IF T = LIST [MID]

FOUND = 1

ELSE IF T <

LIST[MID]

HIGH = MID-1
ELSE
LOW = MID+1

16. IF (FOUND =0) and (HIGH > = LOW) THEN GOTO STEP 14

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-1 EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

17. IF FOUND =0 THEN PRINT “NOT FOUND”
18. ELSE PRINT “FOUND AT”, MID.
19. STOP
The C program for this algorithm is as follows:
#inc

lude

<std

io.h

>

#inc

lude

<std

lib.h

> int

mai

n()
{
int a[30],n,i,t,low,mid,high,found=0;
printf(“\n Enter the number of
elements in the array:”);

scanf(“%d”,&n);

printf(“\n Enter the
elements of the array:”);

for(i=0 ; i< n; i++)
scanf(“%d”, &a[i]);
printf(“\n Enter the

element to search :”);

scanf(“%d”,&t);

low = 0; high = n - 1;
while(high >= low)
{
mid = (low + high) / 2; if(a[mid] == t)
{
found = 1; break;
}else if (t < a[mid]) high = mid - 1;
 else
low = mid + 1;
}
if(found==0)
printf(“\n NOT FOUND”); else
printf(“\n FOUND AT %d”,mid); return 0;
}

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-1 EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Output
Enter the number of elements in the array: 9

Enter the number of elements in the array 9

Enter the elements of the array:
Enter the elements of the array:
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
Enter the element to search: 7 Enter the element to search: 7
FOUND AT 6 NOT FOUND

	LINEAR SEARCH
	BINARY SEARCHING
	Output

