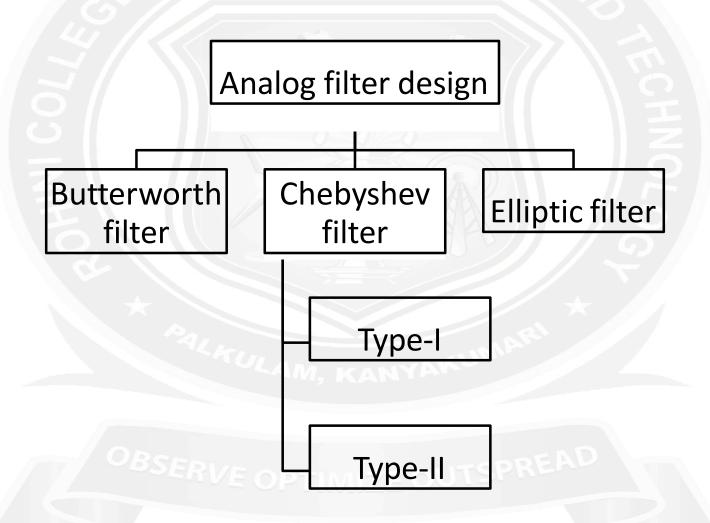

## Characteristics of practical frequency selective filters




## Digital Vs. Analog filter

| 100 5 |                                                                                        |                                                                            |
|-------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|       | Analog filter                                                                          | Digital filter                                                             |
| i)    | Analog filter processes analog input and generates analog output.                      | A digital filter processes and generate digital data.                      |
| ii)   | They are constructed from active (or) passive electronic components.                   | They consists of elements like adders, multiplier and delay unit.          |
| iii)  | Analog filter is described by a differential equation.                                 | Digital filter is represented by a difference equation.                    |
| iv)   | The frequency response of an analog fitter can be modified by changing the components. | The frequency response can be changed by changing the fitter coefficients. |

### Advantages of digital filters

- Unlike analog filter, the digital filter performance is not influenced by component ageing, temperature and power supply variation.
- ii) A digital filter is highly immune to noise and possesses considerable parameters stability.
- iii) Digital filter afford a wide variety of shapes for the amplitude and phase response.
  There are no problem of input (or) output impedance matching with digital filter.
- iv) Digital filter can be osperated over a wide range of frequencies.
- v) The coefficients of digital filter can be programmed and altered any time to obtain the desired characteristics.
- vi) Multiple filtering is possible only in digital filter.

## IIR Filter design



## Analog Butterworth filter design

 Step-1: from the given specification, find the order of filter 'N'

$$N \ge \frac{\log \left[ \sqrt{\frac{10^{0.1\alpha_{s} - 1}}{10^{0.1\alpha_{p} - 1}}} \right]}{\log \left( \frac{\Omega_{s}}{\Omega_{p}} \right)} \ge \frac{\log (\lambda/\epsilon)}{\log \left( \frac{\Omega_{s}}{\Omega_{p}} \right)}$$

Where 
$$\varepsilon_1 = \sqrt{10^{0.1 \alpha_p} - 1}$$

$$\lambda = \sqrt{10^{0.1 \alpha_s} - 1}$$

## Analog Butterworth filter design

- Step-2: Round off the above found 'N' to its next highest integer
- Step-3: Find the normalized transfer function H(s) for  $\Omega c=1$  rad/s, for the value of N

$$H(s) = \frac{N_r \text{ polynomial}}{D_r \text{ polynomial}}$$

For Butterworth filter Nr polynomial is always

# • Step-4: calculate the value of cut-off frequency $\Omega_c$ using,

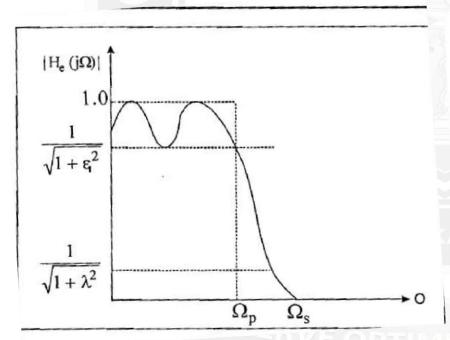
$$\Omega_C = \frac{\Omega_P}{\left(10^{0.10p} - 1\right)^{2N}} = \frac{\Omega_P}{\varepsilon^{1/N}}$$

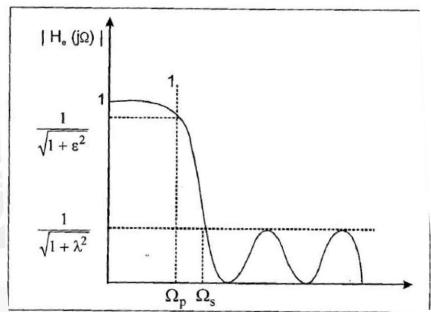
#### Step 5:

Find the transfer function

 $H_a(s)$  for the above values of  $\Omega_c$  by substituting  $s \to s/\Omega_c$  in H(s)

For HPF Ha(s) = H(s) | 
$$s \rightarrow \Omega c/s$$


For LPF Ha(s) = H(s) | 
$$s \rightarrow s/\Omega c$$


#### **Step-6:** To find Ha(s)

## **Analog Chebyshev filter**

#### **Type-I Chebyshev filter**

#### **Type-II Chebyshev filter**





#### GINEER

## Steps to design of analog Chebyshev filter

Step-1: Find N

$$N \ge \frac{\cos h^{-1} \lambda/\xi}{\cos h^{-1} \frac{\Omega_s}{\Omega_p}} \ge \frac{\cos h^{-1} \sqrt{\frac{10^{0.1\alpha_s - 1}}{10^{0.1\alpha_p - 1}}}}{\cosh^{-1} \frac{\Omega_s}{\Omega_p}}$$

 Step-2: Round off the above found 'N' to its next highest integer

OBSERVE OPTIMIZE OUTSPREAD

## Steps to design of analog Chebyshev filter

 step-3: Using following formula find the values of a & b which are minor and major axis of ellipse respectively

$$a = \Omega_p \frac{[\mu^{1/N} - \mu^{-1/N}]}{2} b = \Omega_p \frac{[\mu^{1/N} + \mu^{-1/N}]}{2}$$
 Where  $\mu = \xi^{-1} + \sqrt{\xi^{-2} + 1}$  
$$\epsilon = \sqrt{10^{0-1}\alpha_p - 1}$$

# Steps to design of analog Chebyshev filter

• Step-4:

Calculate the poles of chebyshev filter which lie on the ellipse by using the formula

$$S_k = a \cos \varphi_k + jb \sin \varphi_k k = 1, 2...N$$

Where 
$$\phi_k = \pi/2 + \left(\frac{2k-1}{2N}\right)\pi$$
,  $k = 1, 2 ... N$ 

• Step-5: Find the Denominator polynomial of the transfer function using the above poles.



#### EENGINEER

## Steps to design of analog Chebyshev filter

#### • Step-6:

The Numerator of the transfer function depends on the value of N.

For N = odd, substitute s = 0 in Denominator polynomial & find the value. This value is equal to the Numerator of transfer function.

For N = even, substitute s = 0 in Denominator polynomial & divide the result by  $\sqrt{1+\epsilon^2}$ , This value is equal to the numerator.

