
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Expression using Operators in C

An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions. C language is rich in built-in operators and provides the following types of

operators –

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C language.

Assume variable A holds 10 and variable B holds 20

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

%
Modulus Operator and remainder of after an

integer division.
B % A = 0

++
Increment operator increases the integer value by

one.
A++ = 11

--
Decrement operator decreases the integer value

by one.
A-- = 9

Relational Operators

The following table shows all the relational operators supported by C.

Assume variable A holds 10 and variable B holds 20 then

Operator Description Example

==
Checks if the values of two operands are equal or not. If
yes, then the condition becomes true.

(A == B) is not true.

!=
Checks if the values of two operands are equal or not. If the

values are not equal, then the condition becomes true.
(A != B) is true.

>
Checks if the value of left operand is greater than the value

of right operand. If yes, then the condition becomes true.
(A > B) is not true.

<
Checks if the value of left operand is less than the value of

right operand. If yes, then the condition becomes true.
(A < B) is true.

>=

Checks if the value of left operand is greater than or equal

to the value of right operand. If yes, then the condition

becomes true.

(A >= B) is not true.

<=

Checks if the value of left operand is less than or equal to

the value of right operand. If yes, then the condition

becomes true.

(A <= B) is true.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Logical Operators

Following table shows all the logical operators supported by C language. Assume variable A

holds 1 and variable B holds 0, then −

Operator Description Example

&&
Called Logical AND operator. If both the operands are

non-zero, then the condition becomes true.
(A && B) is false.

||
Called Logical OR Operator. If any of the two operands is

non-zero, then the condition becomes true.
(A || B) is true.

!

Called Logical NOT Operator. It is used to reverse the
logical state of its operand. If a condition is true, then

Logical NOT operator will make it false.

!(A && B) is true.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ is as follows −

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume A = 60 and B = 13 in binary format, they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001
~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable 'A' holds 60 and variable 'B'

holds 13, then −

Operator Description Example

&
Binary AND

It takes 1 if both operands has value 1.
(A & B) = 12, i.e., 0000 1100

|

Binary OR

Operator copies a bit if it exists in either operan

The output of bitwise OR is 1 if at least one

corresponding bit of two operands is 1.

(A | B) = 61, i.e., 0011 1101

^

Binary XOR

1 if the corresponding bits of two operands are

opposite

(A ^ B) = 49, i.e., 0011 0001

~
Binary Ones Complement

'flipping' bits- 0 changed to 1and 1 changed to 0
(~A) = -60, i.e,. 1100 0100

<<

Binary Left Shift Operator.

The left operands value is moved left by the

number of bits specified by the right operand.

A << 2 = 240 i.e., 1111 0000

>>

Binary Right Shift Operator.

The left operands value is moved right by the

number of bits specified by the right operand.

A >> 2 = 15 i.e., 0000 1111

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Assignment Operators

The following table lists the assignment operators supported by the C language

Operator Description Example

=
Simple assignment operator. Assigns values from

right side operands to left side operand

C = A + B will assign the value

of A + B to C

+=

Add AND assignment operator. It adds the right

operand to the left operand and assign the result to

the left operand.

C += A is equivalent to

C = C + A

-=

Subtract AND assignment operator. It subtracts

the right operand from the left operand and

assigns the result to the left operand.

C -= A is equivalent to

C = C - A

*=

Multiply AND assignment operator. It multiplies

the right operand with the left operand and assigns

the result to the left operand.

C *= A is equivalent to

C = C * A

/=

Divide AND assignment operator. It divides the

left operand with the right operand and assigns the

result to the left operand.

C /= A is equivalent to

C = C / A

%=

Modulus AND assignment operator. It takes

modulus using two operands and assigns the

result to the left operand.

C %= A is equivalent to

C = C % A

<<= Left shift AND assignment operator.
C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator.
C >>= 2 is same as

C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as C = C | 2

Misc Operators

Operator Description Example

sizeof() Returns the size of a variable.
int a;

sizeof(a), where a is integer, will return 2.

& Returns the address of a variable.
&a; returns the actual address of the

variable a .(OxFFA)

* Pointer to a variable. *a;

? : Conditional Expression.
If Condition is true ? then value X :

otherwise value Y

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Operators Precedence in C

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has a higher precedence

than +, so it first gets multiplied with 3*2 and then adds into 7.

Table showing highest precedence to lowest precedence

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary Unary +,unary-, (type) * & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality = = != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= Right to left

Comma , Left to right

Expression

Expression is a combination of variables(like a,b,m,n..), constants(3,2,1) and

operators(+,/*).

Eg : c+d

x/y+b+a*a*a

3.14 *r *r

Algebraic Expression C Expression

ab-c a*b-c

(m+n)(k+j) (m+n)*(k+j)

(ab/c) a*b/c

3x2+2x+1 3*x^2+2*x+1

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Example Program

#include<stdio.h>

Program

int main()

{

int x=2,y=3,result;

result=x*5+y*7;

printf(“result =:%d”,result);

return 0;

}

Expression evaluation

result=x*5 + y*7;

result=2*5 + 3*7;

result=2*5 + 3*7;

result=10 + 3*7;

result=10 + 21;

result=31;

Example program –find greatest of 3 numbers
Example of logical(&& logical AND) and relational operators(>)

#include<stdio.h>
int main()
{

int num1,num2,num3;

printf("\nEnter value of a, b and c:");

scanf("%d %d %d",&a,&b,&c);

if((a>b)&&(a>c))
printf("\n %d is greatest",a);

else if(b>c)
printf("\n %d is greatest",b ");

else
printf("\n %d is greatest",c);

return 0;
}

Example program –find odd or even number
Example of Arithmetic(% mod) and relational operators(==)
#include<stdio.h>
int main()
{ int num,result;

if(num%2==0)
printf(“even number \n”);
else
printf(“odd number \n”);
return 0;

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Bitwise XOR

#include

<stdio.h

> int

main()

{

int a = 12, b =

25;

printf("Output =

%d", a^b); return

0;

}

Output = 21

Bitwise complement 1’s compliment

#include

<stdio.h

> int

main()

{

printf("complement =

%d\n",~35); return 0;

}

OutPut:

complement = 220

Bitwise AND and OR operator

#include

<stdio.h

> int

main()

{

int a = 12, b = 25;

printf("OutputAND =

%d", a&b);

printf("OutputOR =

%d", a|b); return 0;

}

Explanation

35 = 00100011 (In Binary)

Bitwise complement Operation of 35

~ 00100011

11011100 = 220 (In decimal)

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise AND Operation of 12 and 25

00001100

& 00011001

 00001000 = 8 (In decimal)

Bitwise OR Operation of 12 and 25

00001100

| 00011001

00011101 = 29 (In decimal)

Explanation

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise XOR Operation of 12 and 25

00001100

00011001

00010101 = 21 (In decimal)

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

OutputAND = 8

OutputOR = 29

	Expression using Operators in C
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Assignment Operators

	Expression
	#include<stdio.h>
	{
	}
	Example program –find greatest of 3 numbers
	Example program –find odd or even number
	Output = 21
	complement = 220
	OutputAND = 8

