
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

 CONTENT ADDRESSABLE NETWORKS (CAN) 
 

 The real motivation behind CAN is the existing networks are not scalable. 

 CAN support basic hash table operations on key-value pairs (K,V): insert, search, delete 

 CAN is composed of individual nodes and each node stores a chunk (zone) of the hash 

table 

 A hash table is formed as a subset of the (K,V) pairs in the table. 

 Each node stores state information about neighbor zones. 

 The requests (insert, lookup, or delete) for a key are routed by intermediate nodes using 

a greedy routing algorithm. 

 It do not need any centralized control (completely distributed). 

 The small per-node state is independent of the number of nodes in the system 

(scalable) and also the nodes can route around failures (fault-tolerant). 

Properties of CAN 

i) Distributed 

ii) fault-tolerant 

iii) scalable 

iv) independent of the naming structure 

v) implementable at the application layer 

vi) self-organizing and self-healing. 

 

A content-addressable network (CAN) is scalable indexing mechanism that maps objects 

to their locations in the network. 

CAN is a logical d-dimensional Cartesian coordinate space organized as a d-torus 

logical topology, i.e., a virtual overlay d-dimensional mesh with wrap-around. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

 A d-torus logical topology is a virtual overlay d-dimensional mesh with wrap- 

around. 

 The entire space is partitioned dynamically among all the nodes present, so that each 

node i is assigned a disjoint region r(i) of the space. 

 As nodes arrive, depart, or fail, the set of participating nodes, as well as the 

assignment of regions to nodes 

 For any object v, its key k(v) is mapped using a deterministic hash function to a point p 

in the Cartesian coordinate space. 

 

 
 

Fig : d-Torus topology 

 The (k, v) pair is stored at the node that is presently assigned the region that contains 

the point p. This means the (k, v) pair is stored at node i if presently the point p 

corresponding to (k, v) lies in region (r, i). 

 To retrieve object v, the same hash function is used to map its key k to the same point 

p. 

 The node that is presently assigned the region that contains p- is accessed to retrieve 

v. 

 The three core components of a CAN design are the following: 

1. Setting up the CAN virtual coordinate space, and partitioning it among the 

nodes as they join the CAN. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

2. Routing in the virtual coordinate space to locate the node that is assigned the 

region containing p. 

3. Maintaining the CAN due to node departures and failures. 

Initialization of CAN 

The following are the steps in CAN initialization: 

1. Each CAN is assumed to have a unique DNS name that maps to the IP address of one 

or a few bootstrap nodes of that CAN. 

 

2. To join a CAN, the joiner node queries a bootstrap node via a DNS lookup, and the 

bootstrap node replies with the IP addresses of some randomly chosen nodes that it 

believes are participating in the CAN. 

3. The joiner chooses a random point p in the coordinate space. The joiner sends a 

request to one of the nodes in the CAN, of which it learnt in step 2, asking to be 

assigned a region containing p. The recipient of the request routes the request to the 

owner old_owner(p) of the region containing p, using the CAN routing algorithm. 

4. The old_owner(p) node splits its region in half and assigns one half to the joiner. The 

region splitting is done using an a priori ordering of all the dimensions, so as to decide 

which dimension to split along. This also helps to methodically merge regions, if 

necessary. The (k, v) tuples for which the key k now maps to the zone to be transferred 

to the joiner, are also transferred to the joiner. 

5. The joiner learns the IP addresses of its neighbors from old_owner(p). The neighbors 

are old_owner(p) and a subset of the neighbors of old_owner(p). The old_owner(p) 

also updates its set of neighbors. The new joiner as well as old_owner(p) inform their 

neighbors of the changes to the space allocation, so that they have correct information 

about their neighborhood and can route correctly. Each node has to send an immediate 

update of its assigned region, followed by periodic Heartbeat refresh messages, to all 

A bootstrap node is responsible for tracking a partial list of the nodes that it believes 

are currently participating in the CAN. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

max 

its neighbors. 

 When a node joins a CAN, only the neighboring nodes in the coordinate space are 

required to participate in the joining process. 

 The overhead is the order of the number of neighbors, which is O(d) and 

independent of n, the number of nodes in the CAN. 

CAN Routing 

 CAN routing uses the straight-line path from the source to the destination in the 

logical Euclidean space. 

 Each node maintains a routing table that tracks its neighbor nodes in the logical 

coordinate space. 

 In d-dimensional space, nodes x and y are neighbors if the coordinate ranges of their 

regions overlap in d − 1 dimensions, in one dimension. 

 All the regions are convex. 

 Let the region x be [[x1
min, x1

max], …[xa
min,x

a]] and the region y be [[y1
min, y1

max],  

…[yd
min, y

d
max]]. 

 X and y are neighbors if there is some dimension j such that xj
max=yi

minand for all 

dimensions, [xi
min, x

i
max]] and [yi

min, y
i
max]] overlap. 

 

 
 

Fig : Two-dimensional CAN space 

 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

 The routing table at each node tracks the IP address and the virtual coordinate region 

of each neighbor. 

 To locate value v, its key (k, v) is mapped to a point p- whose coordinates are used in 

the message header. 

 Knowing the neighbors’ region coordinates, each node follows simple greedy routing by  

forwarding the message to that neighbor having coordinates that are closest to the 

destination’s coordinates. 

 To implement greedy routing to a destination node x, the present node routes a 

message to that neighbor among the neighbors k ∈ Neighbors: 

 Assuming equal-sized zones in d-dimensional space, the average number of neighbors 

for a node is O(d). 

 The average path length is (d/4) n1/d. 

 The implication on scaling is that each node has about the same number of neighbors 

and needs to maintain about the same amount of state information, irrespective of the 

total number of nodes participating in the CAN. 

 The CAN structure is superior to that of Chord. 

 Unlike in Chord, there are typically many paths for any given source-destination pair. 

 This greatly helps for fault-tolerance. 

 Average path length in CAN scales as O(n1/d) as opposed to log n for Chord. 

Maintenance in CAN 

 When a node voluntarily departs from CAN, it hands over its region and the associated 

database of (key, value) tuples to one of its neighbors. 

 If the node’s region can be merged with that of one of its neighbors to form a valid  

convex region, then such a neighbor is chosen. 

 Otherwise the node’s region is handed over to the neighbor whose region has the 

smallest volume or load – the regions are not merged and the neighbor handles both 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

zones temporarily until a periodic background region reassignment process runs to 

integrate the regions and prevent further fragmentation. 

 AN requires each node to periodically send a HEARTBEAT update message to each 

neighbor, giving its assigned region coordinates, the list of its neighbors, and their 

assigned region coordinates. 

 When a node dies, the neighbors suspect its death and initiate a TAKEOVER protocol to 

decide who will take over the crashed node’s region. 

 Despite this TAKEOVER protocol, the (key, value) tuples in the crashed node’s  

database remain lost until the primary sources of those tuples refresh the tuples. 

 Requiring the primary sources to periodically issue such refreshes also serves the dual 

purpose of updating stale or dirty objects in the CAN. 

TAKEOVER protocol 

 

 When a node suspects that a neighbor has died, it starts a timer in proportion to its 

region’s volume. 

 On timeout, it sends a TAKEOVER message, with its region volume piggybacked on 

the message, to all the neighbors of the suspected failed node. 

 When a TAKEOVER message is received, a node cancels its bid to take over the failed 

node’s region if the received TAKEOVER message contains a smaller region volume than 

that of the recipient’s region. 

 This protocol thus helps in load balancing by choosing the neighbor whose region 

volume is the smallest, to take over the failed node’s region. As all nodes initiate the 

TAKEOVER protocol, the node taking over also discovers its neighbors and vice versa. 

 In the case of multiple concurrent node failures in one vicinity of the Cartesian space, 

a more complex protocol using an expanding ring search for the TAKEOVER messages 

can be used. 

 A graceful departure as well as a failure can result in a neighbor holding more than one 

region if its region cannot be merged with that of the departed or failed node. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

 To prevent the resulting fragmentation and restore the 1 → 1node to region 

assignment, there is a background reassignment algorithm that is run periodically. 

 Conceptually, consider a binary tree whose root represents the entire space. An 

internal node represents a region that existed earlier but is now split into regions 

represented by its children nodes. 

 A leaf represents a currently existing region, and overloading the semantics and the 

notation, also the node that represents that region. 

 When a leaf node x fails or departs, there are two cases: 

1. If its sibling node y is also a leaf, then the regions of x and y are merged 

and assigned to y. The region corresponding to the parent of x and y 

becomes a leaf and it is assigned to node y. 

2. If the sibling node y is not a leaf, run a depth-first search in the sub tree 

rooted at y until a pair of sibling leaves (say, z1 and z2) is found. Merge the 

regions of z1 and z2, making their parent z a leaf node, assign the merged 

region to node z2, and the region of x is assigned to node z1. 

 A distributed version of the above depth-first centralized tree traversal can be 

performed by the neighbors of a departed node. 

 The distributed traversal leverages the fact that when a region is split, it is done in 

accordance to a particular ordering on the dimensions. 

 Node i performs its part of the depth first traversal as follows: 

1. Identify the highest ordered dimension dima that has the shortest 

coordinate range [idima
min, i 

dima
max ]. Node i’s region was last halved along 

dimension dima. 

2. Identify neighbor j such that j is assigned the region that was split off 

from i’s region in the last partition along dimension dima. Node j’s region 

i’s region along dimension dima. 

3. If j’s region volume equals i’s region volume, the two nodes are siblings 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

and the regions can be combined. This is the terminating case of the depth 

first tree search for siblings. Node j is assigned the combined region, and 

node i takes over the region of the departed node x. This take over by 

node i is done by returning the recursive search request to the originator 

node, and communicating i’s identity on the replies. 

4. Otherwise, j’s region volume must be smaller than i’s region volume. Node i  

forwards a recursive depth-first search request to j. 

CAN Optimizations 

The following are the design techniques to improve the performance of factors: 

 Multiple dimensions: As the path length is O(d ·n1/d ), increasing the number of 

dimensions decreases the path length and increases routing fault tolerance at the 

expense of larger state space per node. 

 Multiple realities: A coordinate space is termed as a reality. The use of multiple 

independent realities assigns to each node a different region in each different reality. 

This implies that in each reality, the same node will store different (k, v) tuples 

belonging to the region assigned to it in that reality, and will also have a different 

neighbor set. The data contents (k, v) get replicated in each reality, leading to higher 

data availability. The multiple copies of each (k, v) tuple, one in each reality, offer a 

choice – the closest copy can be accessed. Routing fault tolerance improves because 

each reality offers a set of different paths to the same (k, v) tuple. All these contribute 

to more storage. 

 Delay latency: The delay latency on each of the candidate logical links can also be used 

in making the routing decision. 

 Overloading coordinate regions: Each region can be shared by multiple nodes, up to 

some upper limit. This reduces path length and path latency. The fault tolerance 

improves because a region becomes empty only if all the nodes assigned to it depart or 

fail concurrently. The per-hop latency decreases because a node can select the closest 

node from the neighboring region to forward a message towards the destination. This 

demands many of the aspects of the basic CAN protocol need to be reengineered to 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

accommodate overloading of coordinate regions. 

 Multiple hash functions: The use of multiple hash functions maps each key to 

different points in the coordinate space. This replicates each (k, v) pair for each hash 

function used. The effect is similar to that of using multiple realities. 

 Topologically sensitive overlay: The CAN overlay has no correlation to the physical 

proximity or to the IP addresses of domains. Logical neighbors in the overlay may be 

geographically far apart, and logically distant nodes may be physical neighbors. By 

constructing an overlay that accounts for physical proximity in determining logical 

neighbors, the average query latency can be significantly reduced. 

CAN Complexity 

 The time overhead for a new joiner is O(d) for updating the new neighbors in the 

CAN, and O(d/4 log(n)) for routing to the appropriate location in the coordinate space. 

 The time overhead and the overhead in terms of the number of messages for a node 

departure is O(d2), because the TAKEOVER protocol uses a message exchange 

between each pair of neighbors of the departed node. 

. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

 
  CS8603 DISTRIBUTED SYSTEMS 

 TAPESTRY 

 
 

 Tapestry is a decentralized distributed system. 

 It is an overlay network that implements simple key-based routing. 

 It is a prototype of a decentralized, scalable, fault-tolerant, adaptive location and 

routing infrastructure 

 Each node serves as both an object store and a router that applications can contact to 

obtain objects. 

 In a Tapestry network, objects are published at nodes, and once an object has been 

successfully published, it is possible for any other node in the network to find the 

location at which that object is published. 

 The difference between Chord and Tapestry is that in Tapestry the application 

chooses where to store data, rather than allowing the system to choose a node to store 

the object at. 

 The application only publishes a reference to the object. 

 The Tapestry P2P overlay network provides efficient scalable location independent 

routing to locate objects distributed across the Tapestry nodes. 

 The hashed node identifiers are termed VIDs (Virtual ID) and the hashed object 

identifiers are termed as GUIDs (Globally Unique ID). 

Routing and Overlays 
 

 

 It is a middleware that takes the form of a layer which processes the route requests from 

Tapestry is a peer-to-peer overlay network which provides a distributed hash table, 

routing, and multicasting infrastructure for distributed applications. The Tapestry peer- 

to-peer system offers efficient, scalable, self-repairing, location-aware routing to nearby 

resources. 

Routing and overlay are the terms coined for looking objects and nodes in any 

distributed system. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

the clients to the host that holds the objects. 

 The objects can be placed and relocated without the information from the clients. 

Functionalities of routing overlays: 

 A client requests an object with GUID to the routing overlay, which routes the request 

to a node at which the object replica resides. 

 A node that wishes to make the object available to peer-to-peer service computes the 

GUID for the object and announces it to the routing overlay that ensures that the object 

is reachable by all other clients. 

 When client demands object removal, then the routing overlays must make them 

unavailable. 

 Nodes may join or leave the service. 

Routing overlays in Tapestry 

 Tapestry implements Distributed Hash Table (DHT) and routes the messages to the nodes 

based on GUID associated with resources through prefix routing. 

 Publish (GUID) primitive is issued by the nodes to make the network aware of its 

possession of resource. 

 Replicated resources also use the same publish primitive with same GUID. This results 

in multiple routing entries for the same GUID. 

 This offers an advantage that the replica of objects is close to the frequent users to avoid 

latency, network load, improve tolerance and host failures. 

Roots and Surrogate roots 

 Tapestry uses a common identifier space specified using m bit values and presently 

Tapestry recommends m = 160. 

 Each identifier OG in this common overlay space is mapped to a set of unique nodes that 

exists in the network, termed as the identifier’s root set denoted OGR. 

 If there exists a node v such that vid = OGR, then v is the root of identifier OG. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

 
  CS8603 DISTRIBUTED SYSTEMS 

 If such a node does not exist, then a globally known deterministic rule is used to 

identify another unique node sharing the largest common prefix with OG, that acts as the  

surrogate root. 

 To access object O, the goal is to reach the root OGR. 

 Routing to OGR is done using distributed routing tables that are constructed using prefix 

routing information. 

Prefix Routing 
 

 Let M = 2m. The routing table at node vid contains b · logb M entries, organized in logb M 

levels i = 1,…, logb M. 

 Each entry is of the form <wid, IP address>. 

 The following is the property of entry (b) at level i: 

Each entry denotes some neighbor node VIDs with an (i – 1) digit prefix match with v id 

. Further, in level i, for each digit j in the chosen base, there is an entry for which the ith 

digit position is j. The jth entry (counting from 0) in level i has value j for digit position i. 

Let an i digit prefix of vid be denoted as prefix (vid, i). Then the jth entry (counting from 

0) in level i begins with an i-digit prefix prefix (vid,i– 1). j. 

Routing Table 

 The nodes in the router table at vid are the neighbors in the overlay, and these are 

exactly the nodes with which vid communicates. 

 For each forward pointer from node v to v’, there is a backward pointer from v’ to 

v. 

 There is a choice of which entry to add in the router table. The jth entry in level i can 

be the VID of any node whose i-digit prefix is determined; the (m – i) digit suffix can 

vary. 

Prefix routing at any node to select the next hop is done by increasing the prefix match 

of the next hop’s VID with the destination OGR. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 The flexibility is useful to select a node that is close, as defined by some metric 

space. 

 This choice also allows a more fault-tolerant strategy for routing. 

 Multiple VIDs can be stored in the routing table. 

 The jth entry in level i may not exist because no node meets the criterion. This is a 

hole in the routing table. 

 Surrogate routing can be used to route around holes. If the jth entry in level i should 

be chosen but is missing, route to the next non-empty entry in level i, using 

wraparound if needed. 

 All the levels from 1 to logb 2m need to be considered in routing, thus requiring 

logb2
m hops. 

(variables) 

Integer Table[1…logb2
m, 1….b]; //routing table 

(1) NEXT_HOP(i, OG = d1 o d2 … o dlogbm) executed at node vid to 

route to OG: 

// i is (1 + Length of longest common prefix), also level of the table 

(1a) while Table[i, di] = do // dj is the ith digit of destination 

(1b) di  (di+1) mod b; 

(1c) if Table[i, di] = v then // node v also acts as next hop 

// (special case) 

(1d) return (NEXT_HOP(i+1, OG) // locally examine next digit of 

//destination 

(1e) else return (Table[i, di]). // node Table[i, di] is next hop 

Fig : NEXT_HOP(i, OG) 

Object Publication and object searching 

 The unique spanning tree used to route to vid is used to publish and locate an object 

whose unique root identifier OGR is vid. 

 A server S that stores object O having GUID OG and root OGR periodically publishes 

the object by routing a publish message from S towards OGR. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

 
  CS8603 DISTRIBUTED SYSTEMS 

 At each hop and including the root node OGR, the publish message creates a pointer to 

the object. 

 Each node between O and OGR must maintain a pointer to O despite churn. 

 If a node lies on the path from two or more servers storing replicas, that node will  

store a pointer to each replica, sorted in terms of a distance metric. 

 This is the directory information for objects, and is maintained as a soft-state, i.e., it 

requires periodic updates from the server, to deal with changes and to provide fault-

tolerance. 

 To search for an object O with GUID OG, a client sends a query destined for the root 

OGR 

 Along the logb 2
m hops, if a node finds a pointer to the object residing on server S, the 

node redirects the query directly to S. Otherwise, it forwards the query towards the root 

OGR which is guaranteed to have the pointer for the location mapping. 

 A query gets redirected directly to the object as soon as the query path overlaps the 

publish path towards the same root. 

 Each hop towards the root reduces the choice of the selection of its next node by a 

factor of b; hence, the more likely by a factor of b that a query path and a publish path 

will meet. 

 As the next hop is chosen based on the network distance metric whenever there is a 

choice, it is observed that the closer the client is to the server in terms of the distance 

metric, the more likely that their paths to the object root will meet sooner, and the 

faster the query will be redirected to the object. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 

 

Fig : Publishing of object with identifier 72EA1 at two replicas 1F329 and C2B40 Node Insertion 

 When nodes join the network, the result should be the same as though the network and 

the routing tables had been initialized with the nodes as part of the network. 

 The procedure for the insertion of node X should maintain the following property of 

Tapestry: For any node Y on the path between a publisher of object O and the root 

OGR, node Y should have a pointer to O. 

Properties for node insertion: 

 Nodes that have a hole in their routing table should be notified if the insertion of node X can 

fill that hole. 

 If X becomes the new root of existing objects, references to those objects should now lead to 

X. 

 The routing table for node X must be constructed. 

 The nodes near X should include X in their routing tables to perform more efficient routing. 

Steps in insertion 

 Node X uses some gateway node into the Tapestry network to route a message to itself. 

This leads to its surrogate, i.e., the root node with identifier closest to that of itself 

(which is Xid). The surrogate Z identifies the length  of the longest common prefix 

that Zid shares with Xid. 

 Node Z initiates a MULTICAST-CONVERGECAST on behalf of X by creating a 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

 
  CS8603 DISTRIBUTED SYSTEMS 

logical spanning tree as follows. Acting as a root, Z contacts all the (, j) nodes, for all 

j ∈ {0, 1, …, b – 1}. 

 These are the nodes with prefix followed by digit j. Each such (level 1) node Z1 

contacts all the prefix ((Z1, || + 1),j) nodes, for all j ∈ {0, 1,…,b – 1}. This continues up 

to level logb2
m and completes the MULTICAST. 

 The nodes at this level are the leaves of the tree, and initiate the CONVERGECAST, 

which also helps to detect the termination of this phase. 

 The insertion protocols are fairly complex and deal with concurrent insertions. 

Node Deletion 

When a node A leaves the Tapestry overlay: 

1. Node A informs the nodes to which it has back pointers. It also provides them with 

replacement entries for each level from its routing table. This is to prevent holes in 

their routing tables. 

2. The servers to which A has object pointers are also notified. The notified servers 

send object republish messages. 

3. During the above steps, node A routes messages to objects rooted at itself to their new 

roots. On completion of the above steps, node A informs the nodes reachable via its 

back pointers and forward pointers that it is leaving, and then leaves. 

 Node failures are handled by using the redundancy that is built in to the routing 

tables and object location pointers. 

 A node X detects a failure of another node A by using soft-state beacons or when a 

node sends a message but does not get a response. 

 Node X updates its routing table entry for A with a suitable substitute node, running  

the nearest neighbor algorithm if necessary. 

 If A’s failure leaves a hole in the routing table of X, then X contacts the suggorate of A 

in an effort to identify a node to fill the hole. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

 To repair the routing mesh, the object location pointers also have to be adjusted. 

 Objects rooted at the failed node may be inaccessible until the object is 

republished. 

 The protocols for doing so essentially have to: 

i) maintain path availability 

ii) optionally collect garbage/dangling pointers that would otherwise persist until 

the next soft-state refresh and timeout 

Complexity 

 A search for an object is expected to take logb2
m hops. The routing tables are 

optimized to identify nearest neighbor hops. 

 The size of the routing table at each node is c · b · logb2
m where c is the constant 

that limits the size of the neighbor set that is maintained for fault-tolerance. 


	CONTENT ADDRESSABLE NETWORKS (CAN)
	Properties of CAN
	Fig : d-Torus topology
	Initialization of CAN
	CAN Routing
	Fig : Two-dimensional CAN space
	Maintenance in CAN
	TAKEOVER protocol
	CAN Optimizations
	CAN Complexity
	TAPESTRY
	Routing and Overlays
	Functionalities of routing overlays:
	Routing overlays in Tapestry
	Roots and Surrogate roots
	Prefix Routing
	Routing Table
	Fig : NEXT_HOP(i, OG)
	Fig : Publishing of object with identifier 72EA1 at two replicas 1F329 and C2B40 Node Insertion
	Properties for node insertion:
	Steps in insertion
	Node Deletion
	Complexity

