
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

A code-generation algorithm

The algorithm takes as input a sequence of three-address statements constituting a basic block. For each

three-address statement of the form x : = y op z, perform the following actions:

1. Invoke a function getreg to determine the location L where the result of the computation y op z

should be stored.

2. Consult the address descriptor for y to determine y’, the current location of y. Prefer the register for

y’ if the value of y is currently both in memory and a register. If the value of y is not already in L,

generate the instruction MOV y’ , L to place a copy of y in L.

3. Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a register to a memory

location if z is in both. Update the address descriptor of x to indicate that x is in location L. If x is in L,

update its descriptor and remove x from all other descriptors.

4. If the current values of y or z have no next uses, are not live on exit from the block, and are in

registers, alter the register descriptor to indicate that, after execution of x : = y op z , those registers will

no longer contain y or z

Generating Code for Assignment Statements:

• The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-address code

sequence:

Code sequence for the example is:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignmen a:= b[i] and a[i]:= b

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments a : = *p and *p : = a

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

if x < 0 goto z ADD z, R0

MOV R0,x

CJ< z

