

UNIT-1 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

2. FUNDAMENTALS OF ALGORITHMIC PROBLEM SOLVING

A sequence of steps involved in designing and analyzing an algorithm is shown in

the figure below.

 FIGURE 1.2.1 Algorithm design and analysis process.

(i) Understanding the Problem

• This is the first step in designing of algorithm.
• Read the problem’s description carefully to understand the problem

statement completely.
• Ask questions for clarifying the doubts about the problem.
• Identify the problem types and use existing algorithm to find solution.
• Input (instance) to the problem and range of the input get fixed.

(ii) Decision making

The Decision making is done on the following:

a) Ascertaining the Capabilities of the Computational Device

 In random-access machine (RAM), instructions are executed one after

another (The central assumption is that one operation at a time). Accordingly,

UNIT-1 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Algorithms+ Data Structures =Programs

algorithms designed to be executed on such machines are called sequential

algorithms.

→In some newer computers, operations are executed concurrently, i.e., in
parallel. Algorithms that take advantage of this capability are called parallel
algorithms.

→Choice of computational devices like Processor and memory is mainly based on

space and time efficiency

a)Choosing between Exact and Approximate Problem Solving:

→The next principal decision is to choose between solving the problem exactly or
solving it approximately.

→An algorithm used to solve the problem exactly and produce correct result is
called an exact algorithm.

→If the problem is so complex and not able to get exact solution, then we have to

choose an algorithm called an approximation algorithm. i.e., produces an

→Approximate answer. E.g., extracting square roots, solving nonlinear equations,

and evaluating definite integrals.

a) Algorithm Design Techniques

• An algorithm design technique (or “strategy” or “paradigm”) is a general
approach to solving problems algorithmically that is applicable to a variety
of problems from different areas of computing.

• Though Algorithms and Data Structures are independent, but they are

combined together to develop program. Hence the choice of proper data

structure is required before designing the algorithm.

• Implementation of algorithm is possible only with the help of Algorithms
and Data Structures

• Algorithmic strategy / technique / paradigm are a general approach by

which many problems can be solved algorithmically. E.g., Brute Force,

Divide and Conquer, Dynamic Programming, Greedy Technique and soon.

(iii) Methods of Specifying an Algorithm

There are three ways to specify an algorithm.

They are:

a. Natural language

UNIT-1 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

b. Pseudocode

c. Flowchart

 FIGURE 1.2.2 Algorithm Specifications

Pseudocode and flowchart are the two options that are most widely used nowadays

for specifying algorithms.

a. Natural Language

It is very simple and easy to specify an algorithm using natural language. But

many times specification of algorithm by using natural language is not clear and

thereby we get brief specification.

Example: An algorithm to perform addition of two numbers.

Such a specification creates difficulty while actually implementing it. Hence many
programmers prefer to have specification of algorithm by means of Pseudocode.

b) Pseudocode:

• Pseudocode is a mixture of a natural language and programming language
constructs. Pseudocode is usually more precise than natural language.

• For Assignment operation left arrow “←”, for comments two slashes “//”,if
condition, for, while loops are used.

Flowchart Pseudocode Natural Language

Step 1: Read the first number, say a.

Step 2: Read the first number, say b.

Step 3: Add the above two numbers and store the result in c.

Step 4: Display the result from c.

ALGORITHM Sum(a,b)

//Problem Description: This algorithm performs addition of two numbers

//Input: Two integers a and b

//Output: Addition of two integers

c←a+b

returnc

UNIT-1 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

 This specification is more useful for implementation of any language.

c)Flowchart

• In the earlier days of computing, the dominant method for specifying

algorithms was a flowchart, this representation technique has proved to be

inconvenient.

• Flowchart is a graphical representation of an algorithm. It is a method of
expressing an algorithm by a collection of connected geometric shapes

containing descriptions of the algorithm’s steps.

 FIGURE 1.2.3 Flowchart symbols and Example for two integer addition.

(iv) Proving an Algorithm’s Correctness

• Once an algorithm has been specified then its correctness must be proved.

• An algorithm must yield a required result for every legitimate input in a
finite amount of time.

• For Example, the correctness of Euclid’s algorithm for computing the
greatest common

UNIT-1 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

divisor stems from the correctness of the equality gcd(m, n) = gcd(n, m mod
n).

• A common technique for proving correctness is to use mathematical
induction because an algorithm’s iterations provide a natural sequence of
steps needed for such proofs.

• The notion of correctness for approximation algorithms is less
straightforward than it is for exact algorithms. The error produced by the

algorithm should not exceed a predefined limit.

(v) Analyzing an Algorithm

• For an algorithm the most important is efficiency. In fact, there are two

kinds of algorithm efficiency.

 They are:

• Time efficiency, indicating how fast the algorithm runs, and
• Space efficiency, indicating how much extra memory it uses.
• The efficiency of an algorithm is determined by measuring both time

efficiency and space efficiency.
• So factors to analyze an algorithm are:

▪ Time efficiency of an algorithm
▪ Space efficiency of an algorithm

▪ Simplicity of an algorithm

▪ Generality of an algorithm

(vi) Coding an Algorithm

• The coding / implementation of an algorithm is done by a suitable

programming language like C, C++,JAVA.

• The transition from an algorithm to a program can be done either incorrectly

or very inefficiently. Implementing an algorithm correctly is necessary. The

Algorithm power should not reduce by in efficient implementation.

• Standard tricks like computing a loop’s invariant (an expression that does

not change its value) outside the loop, collecting common subexpressions,

replacing expensive operations by cheap ones, selection of programming

language and so on should be known to the programmer.

• Typically, such improvements can speed up a program only by a constant
factor, whereas a better algorithm can make a difference in running time by
orders of magnitude. But once an algorithm is selected, a 10–50% speedup

may be worth an effort.

• It is very essential to write an optimized code (efficient code) to reduce the
burden of compiler.

UNIT-1 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

