HORIZONTAL BACKFILL WITH SURCHARGE

1.2 Design for Cantilever Retaining wall For Heal slab

Example 2

Design a heal slab for cantilever retaining wall to retain an earth embankment with a horizontal top 4m above ground level. Density of earth = 18 KN/m^3 . Angle of internal friction $\emptyset = 30$ degree horizontal backfill with surcharge. SBC of soil = 200 KN/m^2 . Coefficient of friction between soil and concrete = 0.5. Adopt M20 grade concrete and Fe 415 HYSD bars.

Given data:

Fig.1.1 Cantilever retaining wall

Step 1: Dimensions of retaining wall

(a) Depth of foundation = q / γ (1- $\sin \emptyset / 1 + \sin \emptyset$)²

Fig.1.2 Cantilever retaining wall (Depth of foundation)

(b) Overall depth of wall = 4 + 1.2 'H = 5.2m = 5200mm

Fig.1.3 Cantilever retaining wall (Overall depth of wall)

(c) Thickness of base slab
$$= H / 12$$
$$= 5200 / 12$$
$$= 433 \text{mm} \sim 450 \text{mm}$$

(d) Height of stem 'h' =
$$5200 - 450$$
 = 4750 mm

= 4.75 m

Fig.1.4 Cantilever retaining wall (Thickness of base slab)

(e) Width of base slab 'b' =
$$0.5H$$
 to $0.6H$ = 2600 to 3120 = 3000 mm

Fig.1.5 Cantilever retaining wall (Width of base slab)

Step 2: Stability calculation

Fig.1.6 Cantilever retaining wall (Stability calculation)

(a) Find load

w1 =
$$(b \times d \times \gamma c) + (\frac{1}{2} \times bh \times \gamma c)$$

= $(0.2 \times 4.75 \times 24) + (\frac{1}{2} \times 0.25 \times 4.75 \times 24)$
= $22.80 + 14.25$
= 37.05 KN

Fig.1.7 Cantilever retaining wall (Stability calculation)

$$w2 = b \times d \times \gamma c$$
 $= 3 \times 0.45 \times 24$
 $= 32.40 \text{ KN}$
 $w3 = b \times d \times \gamma s$
 $= 1.55 \times 4.75 \times 18$
 $= 132.50 \text{ KN}$
Total load $= w1 + w2 + w3$

(b)Find moment @ a

$$M2 = W2 x Length$$

$$= 32.40 \times 1.5$$

$$M3 = W3 \times Length$$

$$= 132.50 \times 0.78$$

= 103.35 KNm

Total moment
$$M = M1 + M2 + M3 + M4$$

Point of application

$$Z = \sum M / \sum W$$

$$= 1.6 m$$

Eccentricity

$$e = Z - b/2$$

$$= 1.6 - (3/2)$$

$$= 0.1 m$$

i.e
$$b = 3$$
 (width of base slab)

$$b/6 = 3/6$$

$$= 0.5$$

Hence safe

Max and Min pressure at base

$$\sigma = \sum W / b [1 \pm (6e / b)]$$
$$= 201.95/3 [1 \pm (6 \times 0.1 / 3)]$$

omax =
$$67.32 [1 + 0.2]$$

= 80.78 KN/m^2
omin = $67.32 [1 - 0.2]$
= 53.85 KN/m^2

Fig.1.8 Cantilever retaining wall (Stability calculation Top view)

Step 3 : Design of heal slab

(a) Find load

Self weight of heal slab

'W1' = B x D x
$$\gamma$$
c
= 1.55 x 0.45 x 24
= 16.7 KN

Self weight of soil area

'W2' =
$$b x d x \gamma s$$

$$= 1.55 \times 4.75 \times 18$$

$$= 132.50 \text{ KN}$$

Fig.1.9 Cantilever retaining wall (Heal slab)

Moment

$$M1 = W1 x length$$

$$=16.7 \times 0.775$$

$$M2 = 132.50 \times 0.775$$

= 102.68KNm

$$M = M1 + M2$$

$$= 12.94 + 102.68$$

$$= 115.62$$
KNm

Deduction for upward pressure

(abih) 'Wd 1' =
$$\sigma$$
min (breadth) x d

$$= 1.55 \times 53.84$$

$$= 83.45 \text{ KN}$$

Fig.1.10 Cantilever retaining wall (Heal slab Top view)

$$3/26.92$$
 = 1.55 / ig
ig = 1.55 / 0.111
ig = 13.9

Deduction for moment

$$= 64.67 + 5.55$$

$$= 70.22$$
 KNm

Bending moment 'M'
$$= M - Md$$

$$= 115.62 - 70.22$$

= 45.40 KNm

Factored moment 'Mu' = 45.40×1.5

= 68.1 KNm

(c) Find Ast

Mu =
$$(0.87 \text{ fy Ast d})[(1-\text{Ast fy})/(\text{b d fck})]$$

Page no. 96, IS 456:2000

$$68.1 \times 10^6 = (0.87 \times 415 \times Ast \times 400) [(1-415 \times Ast) / (1000 \times 400 \times 20)]$$

$$68.1 \times 10^6 = (144.42 \times 10^3 \text{ Ast}) [(1 - 5.187 \times 10^5 \text{ Ast})]$$

$$68.1 \times 10^6 = (144.42 \times 10^3 \text{ Ast}) - (7.49 \text{ Ast}^2)$$

$$68.1 \times 10^6 - (144.42 \times 10^3 \text{ Ast}) + (7.49 \text{ Ast}^2) = 0$$

(using calculator) mode > Eqn > degree > 2

$$a = 7.49$$

$$b = -144.42 \times 10^{3}$$

$$c = 68.1x 10^6$$

$$x1 = 18798.03$$
mm²

$$x2 = 483.67 \text{mm}^2$$

Ast
$$= 483.67 \text{ mm}^2$$

Find spacing

Provide 12mm dia bars

Spacing =
$$1000 \times [(\pi d^2 / 4) / Ast]$$

= $1000 \times [(\pi \times 12^2 / 4) / 483.67]$
= $233 \sim 240 \text{mm}$

Provide 12mm dia bars at 240mm c/c

Find distribution reinforcement

Ast (dist) =
$$(0.12 / 100) \times bD$$

= $(0.12 / 100) \times 1000 \times 450$
= 540 mm^2

Provide 12mm dia bars

Spacing =
$$1000 \times (\pi d^2 / 4) / Ast$$

= $1000 \times [(\pi \times 12^2 / 4) / 540]$
= $209 \text{mm} \sim 210 \text{mm}$

Provide 12mm dia bars at 210mm c/c

Step 4: Check for safety against sliding

P = Ka x
$$\gamma$$
 (H^2 / 2)
= (1/3) x 18 x (5.2^2 / 2)
= 81.12KN
i.e Ka = (1- $\sin \emptyset$ / 1+ $\sin \emptyset$)
F.O.S against sliding = (μ W / P)
= (0.5 x 201.95 / 81.12)
= 1.24 < 1.5

 $\mu = 0.5$ (given)

Since the wall is unsafe, so a shear key is to be designed below the stem

Step 5: Design of shear key

Intensity of passive pressure in shear key front

Pp = KP x (
$$\sigma$$
max)pressure in shear key front
KP = (1+ $\sin \emptyset / 1$ - $\sin \emptyset$)
= (1+ $\sin 30 / 1$ - $\sin 30$)
= 3
Pp = KP x (σ max)pressure in shear key front
= 3 x 71.78
= 215.34 KN/m^2

Passive force PF = PP x a
=
$$215.34 \times 0.45$$

= $97KN$

F.O.S against sliding =[(
$$\mu$$
W + PF) / P]
= {[(0.5 x 201.95) + 97] / 81.12}
= 2.4 > 1.5

Hence safe

Minimum % of reinforcement in shear key

Ast =
$$(0.3/100) \times bD$$

= $0.003 \times 1000 \times 450$
= 1350mm^2

Provide 16mm dia bars

Spacing =
$$1000 \times (\pi d^2 / 4) / Ast$$

= $1000 \times [(\pi \times 16^2 / 4) / 1350]$
= $148.9 \text{mm} \sim 150 \text{mm}$

Provide 16mm dia bars at 150mm c/c

Step 6: Find shear stress

Shear force 'V' =
$$1.5P - \mu W$$

= $(1.5 \times 81.12) - (0.5 \times 201.95)$
= $20.7KN$

Factored Shear force

'Vu' =
$$20.7 \times 1.5$$

= 31.05 KN

Shear stress '
$$\tau v$$
' = Vu / bd
= 31.05 x 10^3 / (1000 x 400)
= 0.077 N/mm^2

Find τc

$$100$$
Ast / bd = 100×1350 / (1000×400)
= 0.335 N/mm^2

Table 19, page no. 73, IS 456 2000

$$(0.36+0.48)/2 = 0.42$$

$$\tau c = 0.42 \text{ N/mm}^2$$

 $\tau c > \tau v$

Hence safe

Reinforcement detail

Fig.1.11 Cantilever retaining wall (Reinforcement details cross section)

Fig.1.12 Cantilever retaining wall (Reinforcement details Longitudinal cross section)