HORIZONTAL BACKFILL WITH SURCHARGE

1.2 Design for Cantilever Retaining wall For Heal slab

Example 2

Design a heal slab for cantilever retaining wall to retain an earth embankment with a horizontal top 4 m above ground level. Density of earth $=18 \mathrm{KN} / \mathrm{m}^{\wedge} 3$. Angle of internal friction $\emptyset=30$ degree horizontal backfill with surcharge. SBC of soil $=200 \mathrm{KN} / \mathrm{m}^{\wedge} 2$. Coefficient of friction between soil and concrete $=0.5$. Adopt M20 grade concrete and Fe 415 HYSD bars.

Given data:

Density of earth	$' \gamma$ ' $=18 \mathrm{KN} / \mathrm{m}^{\wedge} 3$
Angle of internal friction	$' \emptyset '=30$
SBC of soil	' q '

Fig.1.1 Cantilever retaining wall
Step 1: Dimensions of retaining wall
(a) Depth of foundation $=\mathrm{q} / \gamma(1-\sin \emptyset / 1+\sin \emptyset)^{\wedge} 2$

$$
\begin{aligned}
& =200 / 18(1-\sin 30 / 1+\sin 30)^{\wedge} 2 \\
& =1.2 \mathrm{~m}
\end{aligned}
$$

Fig.1.2 Cantilever retaining wall (Depth of foundation)
(b) Overall depth of wall $=4+1.2$

	$\cdot \mathrm{H} \quad$
	$=5.2 \mathrm{~m}$
	$=5200 \mathrm{~mm}$

Fig.1.3 Cantilever retaining wall (Overall depth of wall)
(c) Thickness of base slab $=\mathrm{H} / 12$

$$
\begin{aligned}
& =5200 / 12 \\
& =433 \mathrm{~mm} \sim 450 \mathrm{~mm}
\end{aligned}
$$

(d) Height of stem

$$
\begin{aligned}
\mathrm{h} ' & =5200-450 \\
& =4750 \mathrm{~mm} \\
& =4.75 \mathrm{~m}
\end{aligned}
$$

Fig.1.4 Cantilever retaining wall (Thickness of base slab)
(e) Width of base slab 'b' $=0.5 \mathrm{H}$ to 0.6 H

$$
=2600 \text { to } 3120
$$

$=3000 \mathrm{~mm}$

Fig.1.5 Cantilever retaining wall (Width of base slab)

Step 2: Stability calculation

Fig.1.6 Cantilever retaining wall (Stability calculation)
(a) Find load

$$
\begin{aligned}
\mathrm{w} 1 \quad & =(\mathrm{b} \times \mathrm{d} \times \gamma \mathrm{c})+(1 / 2 \times \mathrm{bh} \times \gamma \mathrm{c}) \\
& =(0.2 \times 4.75 \times 24)+(1 / 2 \times 0.25 \times 4.75 \times 24) \\
& =22.80+14.25 \\
& =37.05 \mathrm{KN}
\end{aligned}
$$

Fig.1.7 Cantilever retaining wall (Stability calculation)

$$
\begin{aligned}
\mathrm{w} 2 & =\mathrm{bxdx} \mathrm{\gamma c} \\
& =3 \times 0.45 \times 24 \\
& =32.40 \mathrm{KN} \\
\mathrm{w} 3 & =\mathrm{bxdx} \gamma \mathrm{~s} \\
& =1.55 \times 4.75 \times 18 \\
& =132.50 \mathrm{KN} \\
\text { Total load } & =\mathrm{w} 1+\mathrm{w} 2+\mathrm{w} 3 \\
& =201.95 \mathrm{KN}
\end{aligned}
$$

(b)Find moment @ a

$$
\begin{aligned}
\text { M1 } & =\text { W1 } \times \text { Length } \\
& =(22.80 \times 1.65)+(14.25 \times 1.83) \\
& =37.62+26.07 \\
& =63.69 \mathrm{KNm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{M} 2 & =\mathrm{W} 2 \times \text { Length } \\
& =32.40 \times 1.5 \\
& =48.60 \mathrm{KNm} \\
\mathrm{M} 3 & =\mathrm{W} 3 \times \text { Length } \\
& =132.50 \times 0.78 \\
& =103.35 \mathrm{KNm} \\
\mathrm{M} 4 & =107.2 \mathrm{KNm}(\mathrm{Moment} \text { at base }) \\
\text { Total moment } \mathrm{M} & =\mathrm{M} 1+\mathrm{M} 2+\mathrm{M} 3+\mathrm{M} 4 \\
& =322.81 \mathrm{KNm}
\end{aligned}
$$

Point of application

$$
\begin{aligned}
\mathrm{Z} & =\sum \mathrm{M} / \sum \mathrm{W} \\
& =322.81 / 201.95 \\
& =1.6 \mathrm{~m}
\end{aligned}
$$

Eccentricity

$$
\begin{aligned}
& \mathrm{e} \quad=\mathrm{Z}-\mathrm{b} / 2 \\
&=1.6-(3 / 2) \\
&=0.1 \mathrm{~m} \\
& \text { i.e } \mathrm{b}=3 \text { (width of base slab) } \\
& \mathrm{e}<\mathrm{b} / 6 \\
& \mathrm{~b} / 6 \quad=3 / 6 \\
&=0.5
\end{aligned}
$$

$0.1<0.5$

Hence safe

Max and Min pressure at base

$$
\begin{aligned}
\sigma & =\sum \mathrm{W} / \mathrm{b}[1 \pm(6 \mathrm{e} / \mathrm{b})] \\
& =201.95 / 3[1 \pm(6 \times 0.1 / 3)
\end{aligned}
$$

$$
\begin{aligned}
\sigma \max & =67.32[1+0.2] \\
& =80.78 \mathrm{KN} / \mathrm{m}^{\wedge} 2 \\
\sigma \min & =67.32[1-0.2] \\
& =53.85 \mathrm{KN} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

Fig.1.8 Cantilever retaining wall (Stability calculation Top view)
Step 3 : Design of heal slab
(a) Find load

Self weight of heal slab

$$
\begin{aligned}
& \mathrm{W}^{\prime} ' \\
& =\mathrm{B} \times \mathrm{D} \times \gamma \mathrm{c} \\
& =1.55 \times 0.45 \times 24 \\
& =16.7 \mathrm{KN}
\end{aligned}
$$

Self weight of soil area

$$
\text { ‘W2' } \quad=\mathrm{bx} \mathrm{dx} \gamma \mathrm{~s}
$$

$$
\begin{aligned}
& =1.55 \times 4.75 \times 18 \\
& =132.50 \mathrm{KN}
\end{aligned}
$$

Fig.1.9 Cantilever retaining wall (Heal slab)

Moment

$$
\begin{aligned}
\text { M1 } & =\mathrm{W} 1 \times \text { length } \\
& =16.7 \times 0.775 \\
& =12.94 \mathrm{KNm} \\
\text { M2 } & =132.50 \times 0.775 \\
& =102.68 \mathrm{KNm} \\
\text { M } & =\mathrm{M} 1+\mathrm{M} 2 \\
& =12.94+102.68 \\
& =115.62 \mathrm{KNm}
\end{aligned}
$$

Deduction for upward pressure

$$
\begin{aligned}
\text { (abih) 'Wd 1’ } & =\sigma \min (\text { breadth }) \times \mathrm{d} \\
& =1.55 \times 53.84 \\
& =83.45 \mathrm{KN}
\end{aligned}
$$

Fig.1.10 Cantilever retaining wall (Heal slab Top view)

$$
\begin{aligned}
3 / 26.92 & =1.55 / \mathrm{ig} \\
\text { ig } & =1.55 / 0.111 \\
\text { ig } & =13.9
\end{aligned}
$$

Deduction for moment

$$
\begin{aligned}
\text { (abih) 'Md 1' } & =\text { Wd } 1 \times \text { length } \\
& =83.45 \times 0.775 \\
& =64.67 \mathrm{KNm} \\
\text { (ghi) 'Md 2' } & =\mathrm{Wd} 2 \times \text { length (triangular) } \\
& =10.77 \times 0.516 \\
& =5.55 \mathrm{KNm} \\
\text { Md } & =\mathrm{Md} 1+\mathrm{Md} 2
\end{aligned}
$$

$$
\begin{aligned}
& =64.67+5.55 \\
& =70.22 \mathrm{KNm}
\end{aligned}
$$

Bending moment ' M ' $=\mathrm{M}-\mathrm{Md}$

$$
=115.62-70.22
$$

$$
=45.40 \mathrm{KNm}
$$

Factored moment ${ }{ }^{\mathrm{Mu}}{ }^{\prime}=45.40 \times 1.5$

$$
=68.1 \mathrm{KNm}
$$

(c) Find Ast

$$
\mathrm{Mu}=(0.87 \text { fy Ast d })[(1-\text { Ast fy }) /(\mathrm{bd} \text { fck })]
$$

Page no. 96 , IS 456:2000
$68.1 \mathrm{x} 10^{\wedge} 6=(0.87 \mathrm{x} 415 \mathrm{x}$ Ast x 400$)$ [(1-415 x Ast $) /(1000 \mathrm{x} 400 \times 20)$
$68.1 \times 10^{\wedge} 6=\left(144.42 \times 10^{\wedge} 3\right.$ Ast $)\left[\left(1-5.187 \times 10^{\wedge}-5\right.\right.$ Ast $\left.)\right]$
$68.1 \times 10^{\wedge} 6=\left(144.42 \times 10^{\wedge} 3\right.$ Ast $)-(7.49$ Ast^2 $)$
$68.1 \times 10^{\wedge} 6-\left(144.42 \times 10^{\wedge} 3\right.$ Ast $)+(7.49$ Ast^2 $)=0$
(using calculator) mode > Eqn > degree >2

$$
\begin{array}{ll}
\mathrm{a} & =7.49 \\
\mathrm{~b} & =-144.42 \times 10^{\wedge} 3 \\
\mathrm{c} & =68.1 \times 10^{\wedge} 6 \\
\mathrm{x} 1 & =18798.03 \mathrm{~mm}^{\wedge} 2 \\
\mathrm{x} 2 & =483.67 \mathrm{~mm}^{\wedge} 2 \\
\text { Ast } & =483.67 \mathrm{~mm}^{\wedge} 2
\end{array}
$$

Find spacing
Provide 12 mm dia bars

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left[\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) / \text { Ast }\right] \\
& =1000 \times\left[\left(\pi \times 12^{\wedge} 2 / 4\right) / 483.67\right] \\
& =233 \sim 240 \mathrm{~mm}
\end{aligned}
$$

Provide 12 mm dia bars at $240 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Find distribution reinforcement

$$
\begin{aligned}
\text { Ast (dist) } & =(0.12 / 100) \times \mathrm{bD} \\
& =(0.12 / 100) \times 1000 \times 450 \\
& =540 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Provide 12 mm dia bars

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) / \text { Ast } \\
& =1000 \times\left[\left(\pi \times 12^{\wedge} 2 / 4\right) / 540\right] \\
& =209 \mathrm{~mm} \sim 210 \mathrm{~mm}
\end{aligned}
$$

Provide 12 mm dia bars at $210 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Step 4 : Check for safety against sliding

$$
\begin{aligned}
\qquad & =\mathrm{Ka} \times \gamma\left(\mathrm{H}^{\wedge} 2 / 2\right) \\
& =(1 / 3) \times 18 \times\left(5.2^{\wedge} 2 / 2\right) \\
& =81.12 \mathrm{KN} \\
\text { i.e } \quad \mathrm{Ka} & =(1-\sin \emptyset / 1+\sin \emptyset) \\
\text { F.O.S against sliding } & =(\mu \mathrm{W} / \mathrm{P}) \\
& =(0.5 \times 201.95 / 81.12) \\
& =1.24<1.5
\end{aligned}
$$

$\mu=0.5$ (given)
Since the wall is unsafe, so a shear key is to be designed below the stem

Step 5 : Design of shear key
Intensity of passive pressure in shear key front

$$
\text { Passive force } \mathrm{PF}=\mathrm{PP} \times \mathrm{a}
$$

$$
\begin{aligned}
\mathrm{Pp} & =\mathrm{KP} \times(\sigma \mathrm{max}) \text { pressure in shear key front } \\
\mathrm{KP} & =(1+\sin \emptyset / 1-\sin \emptyset) \\
& =(1+\sin 30 / 1-\sin 30) \\
& =3 \\
\mathrm{Pp} & =\mathrm{KP} \times(\sigma \mathrm{max}) \text { pressure in shear key front } \\
& =3 \times 71.78 \\
& =215.34 \mathrm{KN} / \mathrm{m}^{\wedge} 2 \\
\mathrm{e} \mathrm{PF} & =\mathrm{PP} \times \mathrm{a} \\
& =215.34 \times 0.45 \\
& =97 \mathrm{KN}
\end{aligned}
$$

F.O.S against sliding $\quad=[(\mu \mathrm{W}+\mathrm{PF}) / \mathrm{P}]$

$$
\begin{aligned}
& =\{[(0.5 \times 201.95)+97] / 81.12\} \\
& =2.4>1.5
\end{aligned}
$$

Hence safe
Minimum \% of reinforcement in shear key

$$
\begin{aligned}
\text { Ast } & =(0.3 / 100) \times b D \\
& =0.003 \times 1000 \times 450 \\
& =1350 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Provide 16mm dia bars

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) / \text { Ast } \\
& =1000 \times\left[\left(\pi \times 16^{\wedge} 2 / 4\right) / 1350\right] \\
& =148.9 \mathrm{~mm} \sim 150 \mathrm{~mm}
\end{aligned}
$$

Provide 16 mm dia bars at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Step 6 : Find shear stress

$$
\begin{aligned}
\text { Shear force ' } \mathrm{V} \text { ' } & =1.5 \mathrm{P}-\mu \mathrm{W} \\
& =(1.5 \times 81.12)-(0.5 \times 201.95) \\
& =20.7 \mathrm{KN}
\end{aligned}
$$

Factored Shear force

$$
\begin{aligned}
\mathrm{V} \mathrm{u}^{\prime} & =20.7 \times 1.5 \\
& =31.05 \mathrm{KN}
\end{aligned}
$$

$$
\begin{aligned}
\text { Shear stress ' } \tau \mathrm{v} ’ & =\mathrm{Vu} / \mathrm{bd} \\
& =31.05 \times 10^{\wedge} 3 /(1000 \times 400) \\
& =0.077 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

Find τc

$$
\begin{aligned}
100 \text { Ast } / \mathrm{bd} & =100 \times 1350 /(1000 \times 400) \\
& =0.335 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

Table 19, page no. 73 ,IS 4562000

$$
0.25---36
$$

$$
\begin{aligned}
0.50 & ---0.48 \\
(0.36+0.48) / 2 & =0.42 \\
\tau \mathrm{c} & =0.42 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

$\tau \mathrm{c}>\tau \mathrm{v}$

Hence safe

Reinforcement detail

Fig.1.11 Cantilever retaining wall (Reinforcement details cross section)

Fig.1.12 Cantilever retaining wall (Reinforcement details Longitudinal cross section)

