5.4 Design Of Eccentric Shear And Moment Resisting Connections Girders

Example 4

Design a hand operated overhead crane, which is provided in a shed, whose details are

$$
\text { Capacity of crane } \quad=50 \mathrm{kN}
$$

Longitudinal spacing of column $\quad=6 \mathrm{~m}$
Center to center distance of gantry girder $=12 \mathrm{~m}$

$$
\begin{aligned}
\text { wheel spacing } & =3 \mathrm{~m} \\
\text { Edge distance } & =1 \mathrm{~m} \\
\text { Weight of crane girder } & =40 \mathrm{kN} \\
\text { Weight of trolley car } & =10 \mathrm{kN}
\end{aligned}
$$

Solution:

Step 1 Find wheel load

To find support reaction,
Weight of crane girder per meter span

$$
\begin{aligned}
& =40 / 12 \\
& =3.34 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Weight of crane and trolley added together and placed at 1 m

$$
\begin{aligned}
& =50+10 \\
& =60 \mathrm{kN} \\
\mathrm{R}_{\mathrm{A}} \times 12 & =60 \times 11+3.34 \times 12^{\wedge} 2 / 2 \\
\mathrm{R}_{\mathrm{A}} & =75 \mathrm{kN} \\
\text { Wheel load } & =\mathrm{R}_{\mathrm{A}} / 2 \\
& =37.5 \mathrm{KN}
\end{aligned}
$$

Step 2 Find max BM in gantry girder

Adding 10\% for impact,

$$
\begin{aligned}
\text { M1 } & =1.1 \times 63.27 \\
& =69.60 \mathrm{kNm}
\end{aligned}
$$

Max BM due to self weight of girder and rail taking total weight as $1.2 \mathrm{kN} / \mathrm{m}$

$$
\begin{aligned}
\mathrm{M} 2 \quad & =\mathrm{wl} l^{\wedge} 2 / 8 \\
& =1.2 \times 6^{\wedge} 2 / 8 \\
& =5.4 \mathrm{kNm}
\end{aligned}
$$

$$
\text { Total BM, M } \quad=75 \mathrm{KNm}
$$

Step 3 Find max shear

$$
\begin{aligned}
\mathrm{S}_{\mathrm{F}} & =\mathrm{R}_{\mathrm{A}} \\
& =(37.5 \times 6+37.5 \times 3) / 6 \\
& =56.25 \mathrm{KN}
\end{aligned}
$$

Step 4 Find lateral loads
25% of lateral load/num of wheel

$$
\begin{aligned}
& =0.025 \times 60 / 2 \\
& =0.75 \mathrm{KN}
\end{aligned}
$$

Max BM due to lateral load,

$$
\begin{aligned}
\mathrm{ML} & =(36.37 / 37.5) \mathrm{X} 0.75 \\
& =1.27 \mathrm{KNm}
\end{aligned}
$$

Step 5 Selection of section
Economic depth of section

$$
\begin{aligned}
& =\mathrm{L} / 15 \\
& =6000 / 15 \\
& =400 \mathrm{~mm}
\end{aligned}
$$

Let us try ISMB 450@710.2N/m
IS Code 800;2007, pg 138, Flange criteria, $\quad b / t_{f} \quad=75 / 17.4$

$$
\begin{aligned}
& =4.31<9.4 € \\
\text { web criteria, } \mathrm{d} / \mathrm{t}_{\mathrm{w}} & =415.4 / 9.4 \\
& =44.19<83.9 €
\end{aligned}
$$

\therefore section is plastic

Step 6 Shear capacity

$$
\begin{aligned}
\mathrm{F}_{\mathrm{vd}} & =\mathrm{fy} \times \mathrm{A} / \sqrt{ }\left(3 \times \gamma_{\mathrm{mo}}\right) \\
& =250 \times 450 \times 9.4 / \sqrt{ }(3 \times 1.10) \\
& =555043 \mathrm{~N} \\
& =555 \mathrm{KN} \\
\mathrm{~F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{vd}} & =56.25 \times 1.5 / 555 \\
& =0.152<0.6
\end{aligned}
$$

Check for torsional buckling,

$$
\begin{aligned}
\mathrm{t}_{\mathrm{f}} / \mathrm{t}_{\mathrm{w}} \leq 17.4 / 9.4 \quad & =1.85<2 \\
\beta_{\mathrm{LT}}= & 1.2 \text { for plastic section } \\
\mathrm{M}_{\mathrm{cr}}= & \text { elastic critical moment } \\
\mathrm{M}_{\mathrm{cr}}= & \beta_{\mathrm{LT}} \pi^{\wedge} 2 \mathrm{EI} \cdot \mathrm{~h} / 2(\mathrm{KL})^{\wedge} 2\left[1+1 / 20\left[\left(\mathrm{KL} / \mathrm{r}_{\mathrm{y}}\right) /(\mathrm{h} / \mathrm{tf})\right]^{\wedge} 2\right]^{\wedge} 0.5 \\
\mathrm{KL}= & 1.0 \times 6000 \\
= & 6000 \mathrm{~mm} \\
= & 1.2 \pi^{\wedge} 2 \times 2 \times 10^{\wedge} 5 \times 834 \times 10^{\wedge} 4 \mathrm{x} 450 / \\
& 2 \times 6000^{\wedge} 2\left\{1+1 / 20[(6000 / 30.1) /(450 / 17.4)]^{\wedge} 2\right\}^{\wedge} 0.5 \\
\mathrm{M}_{\mathrm{cr}} & =246 \times 10^{\wedge} 6 \mathrm{Nmm}
\end{aligned}
$$

Factored longitudinal moment,

$$
\mathrm{M}_{\mathrm{f}}=75 \times 1.5
$$

$$
=112.5 \mathrm{kNm}
$$

Factored lateral moment,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{fL}} & =1.27 \times 1.5 \\
& =1.91 \mathrm{kNm}
\end{aligned}
$$

Lateral BM capacity,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{dL}} & =\mathrm{Z}_{\mathrm{py}} \cdot \mathrm{f}_{\mathrm{y}} / 1.10 \\
& =\left[\mathrm{Z}_{\mathrm{ey}} / 2 \times \text { shape factor } \mathrm{x} \text { fy }\right] / 1.10 \\
& =\left[\left(111.2 \times 10^{\wedge} 3\right) / 2 \times 1.15 \times 250\right] / 1.10 \\
& =14.53 \times 10^{\wedge} 6 \mathrm{Nmm} \\
& =14.53 \mathrm{kNm}
\end{aligned}
$$

For safety,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{f}} / \mathrm{M}_{\mathrm{d}}[\text { longitudinal } & \left.+\mathrm{M}_{\mathrm{f}} / \mathrm{M}_{\mathrm{d}}\right] \text { lateral } \leq 1.0 \\
& =112.5 / 174.34+1.91 / 14.53 \\
& =0.78<1.0
\end{aligned}
$$

Hence, section selected is adequate and safe.

