
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

LINUX - FILE SYSTEMS

 Linux retains UNIX’s standard file-system model. In UNIX, a file does not have to be

an object stored on disk or fetched over a network from a remote file server. Rather, UNIX

files can be anything capable of handling the input or output of a stream of data. Device

drivers can appear as files, and interprocess-communication channels or network

connections also look like files to the user.

 The Linux kernel handles all these types of files by hiding the implemen-tation details

of any single file type behind a layer of software, the virtual file system (VFS). Here, we first

cover the virtual file system and then discuss the standard Linux file system — ext3.

The Virtual File System

The Linux VFS is designed around object-oriented principles. It has two components:

a set of definitions that specify what file-system objects are allowed to look like and a

layer of software to manipulate the objects. The VFS defines four main object types:

 An inode object represents an individual file. A file object represents an open file.

 A superblock object represents an entire file system.

 A dentry object represents an individual directory entry.

 For each of these four object types, the VFS defines a set of operations. Every

object of one of these types contains a pointer to a function table. The function table lists

the addresses of the actual functions that implement the defined operations for that

object. For example, an abbreviated API for some of the file object’s operations includes:

 int open(. . .) — Open a file.

 ssize t read(. . .) — Read from a file. ssize t write(. . .) — Write to a

file.

 int mmap(. . .) — Memory-map a file.

 The complete definition of the file object is specified in the struct file operations,

which is located in the file /usr/include/linux/fs.h. An implementation of the file object

(for a specific file type) is required to implement each function specified in the

definition of the file object.

 The VFS software layer can perform an operation on one of the file-system objects

by calling the appropriate function from the object’s function table, without having to know

in advance exactly what kind of object it is dealing with. The VFS does not know, or care,

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

whether an inode represents a networked file, a disk file, a network socket, or a directory

file. The appropriate function for that file’s read() operation will always be at the same

place in its function table, and the VFS software layer will call that function without caring

how the data are actually read.

 The inode and file objects are the mechanisms used to access files. An inode

object is a data structure containing pointers to the disk blocks that contain the actual

file contents, and a file object represents a point of access to the data in an open file.

 A process cannot access an inode’s contents without first obtaining a file object

pointing to the inode. The file object keeps track of where in the file the process is currently

reading or writing, to keep track of sequential file I/O.

 It also remembers the permissions (for example, read or write) requested when the

file was opened and tracks the process’s activity if necessary to perform adaptive read-

ahead, fetching file data into memory before the process requests the data, to improve

performance.

 File objects typically belong to a single process, but inode objects do not. There is

one file object for every instance of an open file, but always only a single inode object.

Even when a file is no longer in use by any process, its inode object may still be cached by

the VFS to improve performance if the file is used again in the near future. All cached file

data are linked onto a list in the file’s inode object. The inode also maintains standard

information about each file, such as the owner, size, and time most recently modified.

 Directory files are dealt with slightly differently from other files. The UNIX

programming interface defines a number of operations on directories, such as creating,

deleting, and renaming a file in a directory. The system calls for these directory operations

do not require that the user open the files concerned, unlike the case for reading or writing

data. The VFS therefore defines these directory operations in the inode object, rather than

in the file object.

 The superblock object represents a connected set of files that form a self-contained

file system. The operating- system kernel maintains a single superblock object for each

disk device mounted as a file system and for each networked file system currently

connected. The main responsibility of the superblock object is to provide access to

inodes. The VFS identifies every inode by a unique file-system/inode number pair, and it

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

finds the inode corresponding to a particular inode number by asking the superblock object

to return the inode with that number.

 Finally, a dentry object represents a directory entry, which may include the name

of a directory in the path name of a file (such as /usr) or the actual file (such as stdio.h).

For example, the file /usr/include/stdio.h contains the directory entries (1) /, (2) usr, (3)

include, and (4) stdio.h. Each of these values is represented by a separate dentry object.

As an example of how dentry objects are used, consider the situ-ation in which a process

wishes to open the file with the pathname /usr/include/stdio.h using an editor.

 Because Linux treats directory names as files, translating this path requires first

obtaining the inode for the root — /. The operating system must then read through this

file to obtain the inode for the file include. It must continue this process until it obtains the

inode for the file stdio.h. Because path-name translation can be a time-consuming task,

Linux maintains a cache of dentry objects, which is consulted during path-name

translation. Obtaining the inode from the dentry cache is considerably faster than having

to read the on-disk file.

The Linux ext3 File System

 The standard on-disk file system used by Linux is called ext3, for historical

reasons. Linux was originally programmed with a Minix-compatible file system, to ease

exchanging data with the Minix development system, but that file system was severely

restricted by 14-character file-name limits and a maximum file-system size of 64 MB.

 The Minix file system was superseded by a new file system, which was christened the

extended file system (extfs). A later redesign to improve performance and scalability and

to add a few missing features led to the second extended file system (ext2). Further

development added journaling capabilities, and the system was renamed the third

extended file system (ext3).

 Linux kernel developers are working on augmenting ext3 with modern file-

system features such as extents. This new file system is called the fourth extended file

system (ext4). The rest of this section discusses ext3, however, since it remains the most-

deployed Linux file system. Most of the discussion applies equally to ext4.Linux’s ext3 has

much in common with the BSD Fast File System (FFS). It uses a similar mechanism for

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

locating the data blocks belonging to a specific file, storing data-block pointers in indirect

blocks throughout the file system with up to three levels of indirection.

 As in FFS, directory files are stored on disk just like normal files, although their

contents are interpreted differently. Each block in a directory file consists of a linked list of

entries. In turn, each entry contains the length of the entry, the name of a file, and the

inode number of the inode to which that entry refers.

 The main differences between ext3 and FFS lie in their disk-allocation policies. In FFS,

the disk is allocated to files in blocks of 8 KB. These blocks are subdivided into fragments of

1 KB for storage of small files or partially filled blocks at the ends of files. In contrast, ext3

does not use fragments at all but performs all its allocations in smaller units. The default

block size on ext3 varies as a function of the total size of the file system. Supported block

sizes are

1, 2, 4, and 8 KB.

 To maintain high performance, the operating system must try to perform I/O

operations in large chunks whenever possible by clustering physically adjacent I/O

requests. Clustering reduces the per-request overhead incurred by device drivers, disks,

and disk-controller hardware.

 A block-sized I/O request size is too small to maintain good performance, so ext3

uses allocation policies designed to place logically adjacent blocks of a file into

physically adjacent blocks on disk, so that it can submit an I/O request for several disk

blocks as a single operation.

 The ext3 allocation policy works as follows: As in FFS, an ext3 file system is

partitioned into multiple segments. In ext3, these are called block groups. FFS uses the

similar concept of cylinder groups, where each group corresponds to a single cylinder of a

physical disk. (Note that modern disk-drive technology packs sectors onto the disk at

different densities, and thus with different cylinder sizes, depending on how far the disk

head is from the center of the disk. Therefore, fixed-sized cylinder groups do not necessarily

correspond to the disk’s geometry.)

 When allocating a file, ext3 must first select the block group for that file. For

data blocks, it attempts to allocate the file to the block group to which the file’s inode

has been allocated. For inode allocations, it selects the block group in which the file’s

parent directory resides for nondirectory files. Directory files are not kept together but

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

rather are dispersed throughout the available block groups. These policies are

designed not only to keep related information within the same block group but also to

spread out the disk load among the disk’s block groups to reduce the fragmentation of any

one area of the disk.

 Within a block group, ext3 tries to keep allocations physically contiguous if possible,

reducing fragmentation if it can. It maintains a bitmap of all free blocks in a block group.

When allocating the first blocks for a new file, it starts searching for a free block from the

beginning of the block group. When extending a file, it continues the search from the block

most recently allocated to the file. The search is performed in two stages. First, ext3

searches for an entire free byte in the bitmap; if it fails to find one, it looks for any free bit.

The search for free bytes aims to allocate disk space in chunks of at least eight blocks where

possible.

 Once a free block has been identified, the search is extended backward until an

allocated block is encountered. When a free byte is found in the bitmap, this backward

extension prevents ext3 from leaving a hole between the most recently allocated block in

the previous nonzero byte and the zero byte found.

 Once the next block to be allocated has been found by either bit or byte search, ext3

extends the allocation forward for up to eight blocks and preallocates these extra blocks to

the file. This preallocation helps to reduce fragmentation during interleaved writes to

separate files and also reduces the CPU cost of disk allocation by allocating multiple blocks

simultaneously. The preallocated blocks are returned to the free-space bitmap when the

file is closed.

 Figure 5.7 illustrates the allocation policies. Each row represents a sequence of

set and unset bits in an allocation bitmap, indicating used and free blocks on disk. In the

first case, if we can find any free blocks sufficiently near the start of the search, then

we allocate them no matter how fragmented they may be.

 The fragmentation is partially compensated for by the fact that the blocks are close

together and can probably all be read without any disk seeks. Furthermore, allocating them

all to one file is better in the long run than allocating isolated blocks to separate files once

large free areas become scarce on disk. In the second case, we have not immediately found

a free block close by, so we search forward for an entire free byte in the bitmap. If we

allocated that byte as a whole, we would end up creating a fragmented area of free space

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

between it and the allocation preceding it. Thus, before allocating, we back up to make

this allocation flush with the allocation preceding it, and then we allocate forward

to satisfy the default allocation of eight blocks.

Journaling

 The ext3 file system supports a popular feature called journaling, whereby

modifications to the file system are written sequentially to a journal. A set of operations

that performs a specific task is a transaction. Once a transaction is written to the journal,

it is considered to be committed.

 Meanwhile, the journal entries relating to the transaction are replayed across the

actual file-system structures. As the changes are made, a pointer is updated to

indicate which actions have completed and which are still incomplete. When an

entire committed transaction is completed, it is removed from the journal. The

journal, which is actually a circular buffer, may be in a separate section of the file

system, or it may even be on a separate disk spindle. It is more efficient, but more

complex, to have it under separate read – write heads, thereby decreasing head

contention and seek times.

 If the system crashes, some transactions may remain in the journal. Those

transactions were never completed to the file system even though they were committed

by the operating system, so they must be completed once the system recovers. The

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

transactions can be executed from the pointer until the work is complete, and the file-

system structures remain consistent. The only problem occurs when a transaction has

been aborted — that is, it was not committed before the system crashed.

Any changes from those transactions that were applied to the file system must be undone,

again preserving the consistency of the file system. This recovery is all that is needed after

a crash, eliminating all problems with consistency checking.

 Journaling file systems may perform some operations faster than non-journaling

systems, as updates proceed much faster when they are applied to the in-memory journal

rather than directly to the on-disk data structures. The reason for this improvement is

found in the performance advantage of sequential I/O over random I/O.

 Costly synchronous random writes to the file system are turned into much less costly

synchronous sequential writes to the file system’s journal. Those changes, in turn, are

replayed asynchronously via random writes to the appropriate structures. The overall

result is a significant gain in performance of file-system metadata-oriented operations,

such as file creation and deletion. Due to this performance improvement, ext3 can be

configured to journal only metadata and not file data.

The Linux Process File System

 The flexibility of the Linux VFS enables us to implement a file system that does not

store data persistently at all but rather provides an interface to some other functionality.

The Linux process file system, known as the /proc file system, is an example of a file system

whose contents are not actually stored anywhere but are computed on demand according

to user file I/O requests.

 A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc file system

as an efficient interface to the kernel’s process debugging support. Each subdirectory of

the file system corresponded not to a directory on any disk but rather to an active process

on the current system. A listing of the file system reveals one directory per process, with

the directory name being the ASCII decimal representation of the process’s unique process

identifier (PID).

 Linux implements such a /proc file system but extends it greatly by adding a number

of extra directories and text files under the file system’s root directory. These new entries

correspond to various statistics about the kernel and the associated loaded drivers. The

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

/proc file system provides a way for programs to access this information as plain text files;

the standard UNIX user environment provides powerful tools to process such files.

 For example, in the past, the traditional UNIX ps command for listing the states

of all running processes has been implemented as a privileged process that reads the

process state directly from the kernel’s virtual memory. Under Linux, this command

is implemented as an entirely unprivileged program that simply parses and formats the

information from /proc.

 The /proc file system must implement two things: a directory structure and the file

contents within. Because a UNIX file system is defined as a set of file and directory inodes

identified by their inode numbers, the /proc file system must define a unique and

persistent inode number for each directory and the associated files.

 Once such a mapping exists, the file system can use this inode number to identify just

what operation is required when a user tries to read from a particular file inode or to

perform a lookup in a particular directory inode. When data are read from one of these

files, the /proc file system will collect the appropriate information, format it into textual

form, and place it into the requesting process’s read buffer.

 The mapping from inode number to information type splits the inode number into

two fields. In Linux, a PID is 16 bits in size, but an inode number is 32 bits. The top 16 bits

of the inode number are interpreted as a PID, and the remaining bits define what type of

information is being requested about that process.

 A PID of zero is not valid, so a zero PID field in the inode number is taken to mean

that this inode contains global rather than process-specific information. Separate global

files exist in /proc to report information such as the kernel version, free memory,

performance statistics, and drivers currently running.

Input and Output

 To the user, the I/O system in Linux looks much like that in any UNIX system. That is,

to the extent possible, all device drivers appear as normal files. Users can open an access

channel to a device in the same way they open any other file — devices can appear as

objects within the file system.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

 The system administrator can create special files within a file system that contain

references to a specific device driver, and a user opening such a file will be able to read

from and write to the device referenced. By using the normal file-protection system, which

determines who can access which file, the administrator can set access permissions for

each device.

 Linux splits all devices into three classes: block devices, character devices, and

network devices. Figure 5.8 illustrates the overall structure of the device-driver system.

Block devices

 Include all devices that allow random access to completely independent, fixed-sized

blocks of data, including hard disks and floppy disks, CD-ROMs and Blu-ray discs, and

flash memory. Block devices are typically used to store file systems, but direct access to

a block device is also allowed so that programs can create and repair the file system that

the device contains. Applications can also access these block devices directly if they wish.

For example, a database application may prefer to perform its own fine-tuned layout of

data onto a disk rather than using the general-purpose file system.

Character devices

 Include most other devices, such as mice and keyboards. The fundamental

difference between block and character devices is random access block devices are

accessed randomly, while character devices are accessed serially. For example, seeking to

a certain position in a file might be supported for a DVD but makes no sense for a pointing

device such as a mouse.

Network devices

 They are dealt with differently from block and character devices. Users cannot

directly transfer data to network devices. Instead, they must communicate indirectly by

opening a connection to the kernel’s networking subsystem.

Block Devices

Block devices provide the main interface to all disk devices in a system. Performance is

particularly important for disks, and the block-device system must provide functionality to

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

ensure that disk access is as fast as possible. This functionality is achieved through the

scheduling of I/O operations.

 In the context of block devices, a block represents the unit with which the kernel

performs I/O. When a block is read into memory, it is stored in a buffer. The request

manager is the layer of software that manages the reading and writing of buffer contents

to and from a block-device driver.

 A separate list of requests is kept for each block-device driver. Traditionally,

these requests have been scheduled according to a unidirectional-elevator (C-SCAN)

algorithm that exploits the order in which requests are inserted in and removed from

the lists. The request lists are maintained in sorted order of increasing starting-sector

number. When a request is accepted for processing by a block-device driver, it is

not removed from the list.

 It is removed only after the I/O is complete, at which point the driver continues with

the next request in the list, even if new requests have been inserted in the list before the

active request. As new I/O requests are made, the request manager attempts to merge

requests in the lists.

 Linux kernel version 2.6 introduced a new I/O scheduling algorithm. Although a

simple elevator algorithm remains available, the default I/O scheduler is now the

Completely Fair Queueing (CFQ) scheduler. The CFQ I/O scheduler is fundamentally

different from elevator-based algorithms. Instead of sorting requests into a list, CFQ

maintains a set of lists by default, one for each process. Requests originating from a process

go in that process’s list. For example, if two processes are issuing I/O requests, CFQ will

maintain two separate lists of requests, one for each process. The lists are maintained

according to the C-SCAN algorithm.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

Character Devices

 A character-device driver can be almost any device driver that does not offer random

access to fixed blocks of data. Any character-device drivers registered to the Linux kernel

must also register a set of functions that implement the file I/O operations that the driver

can handle. The kernel performs almost no preprocessing of a file read or write request

to a character device. It simply passes the request to the device in question and lets the

device deal with the request.

 The main exception to this rule is the special subset of character-device drivers

that implement terminal devices. The kernel maintains a standard interface to these

drivers by means of a set of tty struct structures. Each of these structures provides buffering

and flow control on the data stream from the terminal device and feeds those data to a

line discipline.

 A line discipline is an interpreter for the information from the terminal device.

The most common line discipline is the tty discipline, which glues the terminal’s data

stream onto the standard input and output streams of a user’s running processes,

allowing those processes to communicate directly with the user’s terminal.

 This job is complicated by the fact that several such processes may be running

simultaneously, and the tty line discipline is responsible for attaching and detaching the

terminal’s input and output from the various processes connected to it as those processes

are suspended or awakened by the user.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

 Other line disciplines also are implemented that have nothing to do with I/O to a user

process. The PPP and SLIP networking protocols are ways of encoding a networking

connection over a terminal device such as a serial line.

 These protocols are implemented under Linux as drivers that at one end appear

to the terminal system as line disciplines and at the other end appear to the networking

system as network-device drivers. After one of theseline disciplines has been enabled on a

terminal device, any data appearing on that terminal will be routed directly to the

appropriate network-device driver.

