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LINUX - FILE SYSTEMS 

 Linux retains UNIX’s standard file-system model. In UNIX, a file does not have to be 

an object stored on disk or fetched over a network from a remote file server. Rather, UNIX 

files can be anything capable of handling the input or output of a stream of data. Device 

drivers can appear as files, and interprocess-communication channels or network 

connections also look like files to the user. 

 The Linux kernel handles all these types of files by hiding the implemen-tation details 

of any single file type behind a layer of software, the virtual file system (VFS). Here, we first 

cover the virtual file system and then discuss the standard Linux file system — ext3. 

 

The Virtual File System 

The Linux  VFS  is  designed  around  object-oriented  principles.  It  has  two  components:  

a  set  of  definitions  that specify what file-system objects are allowed to look like and a 

layer of software to manipulate the objects. The VFS defines four main object types: 

 An inode object represents an individual file. A file object represents an open file. 

 A superblock object represents an entire file system. 

 A dentry object represents an individual directory entry. 

 For  each of these four  object types,  the VFS  defines a  set of operations.  Every  

object of  one of these types contains a pointer to a function table. The function table lists 

the addresses of the actual functions that implement the defined operations for that 

object. For example, an abbreviated API for some of the file object’s operations includes: 

   int open(. . .) — Open a file. 

   ssize t read(. . .) — Read from a file. ssize t write(. . .) — Write to a 

file. 

   int mmap(. . .) — Memory-map a file. 

 The complete definition of the file object is specified in the struct file operations, 

which is located in the file /usr/include/linux/fs.h.  An implementation  of  the  file  object  

(for  a  specific  file type)  is  required to  implement  each function specified in the 

definition of the file object. 

 The VFS software layer can perform an operation on one of the file-system objects 

by calling the appropriate function from the object’s function table, without having to know 

in advance exactly what kind of object it is dealing with. The VFS does not know, or care, 
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whether an inode represents a networked file, a disk file, a network socket, or a directory 

file. The appropriate function for that file’s read() operation will always be at the same 

place in its function table, and the VFS software layer will call that function without caring 

how the data are actually read. 

 The  inode  and  file  objects  are  the  mechanisms  used  to  access  files.  An  inode  

object  is  a  data  structure containing pointers to the disk blocks that contain the actual 

file contents, and a file object represents a point of access to the data in an open file.  

 A process cannot access an inode’s contents without first obtaining a file object 

pointing to the inode. The file object keeps track of where in the file the process is currently 

reading or writing, to keep track of sequential file I/O.  

 It also remembers the permissions (for example, read or write) requested when the 

file was opened and tracks the process’s activity if necessary to perform adaptive read-

ahead, fetching file data into memory before the process requests the data, to improve 

performance. 

 File objects typically belong to a single process,  but inode objects do not.  There is 

one file object for  every instance of an open file, but always only a single inode object. 

Even when a file is no longer in use by any process, its inode object may still be cached by 

the VFS to improve performance if the file is used again in the near future. All cached file 

data are linked onto a list in the file’s inode object. The inode also maintains standard 

information about each file, such as the owner, size, and time most recently modified. 

 Directory files are dealt with slightly differently from other files. The UNIX 

programming interface defines a number of operations on directories, such as creating, 

deleting, and renaming a file in a directory. The system calls for these directory operations 

do not require that the user open the files concerned, unlike the case for reading or writing 

data. The VFS therefore defines these directory operations in the inode object, rather than 

in the file object. 

 The superblock object represents a connected set of files that form a self-contained 

file system. The operating- system  kernel  maintains  a  single  superblock  object  for  each  

disk  device  mounted  as  a  file  system  and  for  each networked file system currently 

connected.  The  main responsibility of  the superblock object  is  to provide  access  to 

inodes. The VFS identifies every inode by a unique file-system/inode number pair, and it 
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finds the inode corresponding to a particular inode number by asking the superblock object 

to return the inode with that number. 

 Finally,  a dentry object represents a  directory entry,  which may include the name 

of a  directory in the path name of a file (such as /usr) or the actual file (such as stdio.h). 

For example, the file /usr/include/stdio.h contains the directory  entries  (1)  /,  (2) usr,  (3) 

include,  and (4)  stdio.h.  Each of  these values  is  represented by a  separate dentry object. 

As an example of how dentry objects are used, consider the situ-ation in which a process 

wishes to open the file with the pathname /usr/include/stdio.h using an editor.   

 Because Linux treats directory names as files, translating this path requires first 

obtaining the inode for the root  — /. The operating system must then read through this 

file to obtain the inode for the file include. It must continue this process until it obtains the 

inode for the file stdio.h. Because path-name translation can be a  time-consuming task,  

Linux  maintains  a  cache of  dentry objects,  which is  consulted during path-name 

translation. Obtaining the inode from the dentry cache is considerably faster than having 

to read the on-disk file. 

 

The Linux ext3 File System 

 The  standard  on-disk  file  system used  by  Linux  is  called  ext3,  for  historical  

reasons.  Linux  was  originally programmed with a  Minix-compatible file system,  to ease 

exchanging data with the Minix development system,  but that file system was severely 

restricted by 14-character  file-name limits and a maximum file-system size of 64 MB.  

 The Minix file system was superseded by a new file system, which was christened the 

extended file system (extfs). A later redesign to improve performance and scalability and 

to add a few missing features led to the second extended file system (ext2). Further 

development added journaling capabilities, and the system was renamed the third 

extended file system (ext3).   

 Linux  kernel  developers  are  working  on  augmenting  ext3  with  modern  file-

system features  such  as extents. This new file system is called the fourth extended file 

system (ext4). The rest of this section discusses ext3, however, since it remains the most-

deployed Linux file system. Most of the discussion applies equally to ext4.Linux’s ext3 has 

much in common with the BSD Fast File System (FFS). It uses a similar mechanism for 
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locating the data blocks belonging to a specific file, storing data-block pointers in indirect 

blocks throughout the file system  with  up  to  three  levels  of  indirection.   

 As  in  FFS,  directory  files  are  stored  on  disk  just  like  normal  files, although their 

contents are interpreted differently. Each block in a directory file consists of a linked list of 

entries. In turn, each entry contains the length of the entry, the name of a file, and the 

inode number of the inode to which that entry refers. 

 The main differences between ext3 and FFS lie in their disk-allocation policies. In FFS, 

the disk is allocated to files in blocks of 8 KB. These blocks are subdivided into fragments of 

1 KB for storage of small files or partially filled blocks at the ends of files.  In contrast, ext3 

does not  use fragments at all but performs all its allocations in smaller units. The default 

block size on ext3 varies as a function of the total size of the file system. Supported block 

sizes are 

1, 2, 4, and 8 KB. 

 To  maintain  high  performance,  the  operating  system  must  try  to  perform  I/O  

operations  in  large  chunks whenever possible by clustering physically adjacent I/O 

requests. Clustering reduces the per-request overhead incurred by device drivers,  disks,  

and disk-controller  hardware.   

 A block-sized I/O request  size is too small to maintain good performance,  so  ext3  

uses  allocation  policies  designed  to  place  logically  adjacent  blocks  of  a  file  into  

physically adjacent blocks on disk, so that it can submit an I/O request for several disk 

blocks as a single operation. 

 The  ext3  allocation  policy  works  as  follows:  As  in  FFS,  an  ext3  file  system  is  

partitioned  into  multiple segments. In ext3, these are called block groups. FFS uses the 

similar concept of cylinder groups, where each group corresponds to a single cylinder of a 

physical disk. (Note that modern disk-drive technology packs sectors onto the disk at 

different densities, and thus with different cylinder sizes, depending on how far the disk 

head is from the center of the disk. Therefore, fixed-sized cylinder groups do not necessarily 

correspond to the disk’s geometry.) 

 When  allocating  a  file,  ext3  must  first  select  the  block  group  for  that  file.  For  

data  blocks,  it  attempts  to allocate the file to the block group to which the file’s inode 

has been allocated.  For  inode allocations,  it selects the block group in which the file’s 

parent directory resides for nondirectory files. Directory files are not kept together but 
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rather  are  dispersed  throughout  the  available  block  groups.  These  policies  are  

designed  not  only  to  keep  related information within the same block group but also to 

spread out the disk load among the disk’s block groups to reduce the fragmentation of any 

one area of the disk. 

 Within a block group, ext3 tries to keep allocations physically contiguous if possible, 

reducing fragmentation if it can. It maintains a bitmap of all free blocks in a block group. 

When allocating the first blocks for a new file, it starts searching for a free block from the 

beginning of the block group. When extending a file, it continues the search from the block 

most recently allocated to the file. The search is performed in two stages. First, ext3 

searches for an entire free byte in the bitmap; if it fails to find one, it looks for any free bit. 

The search for free bytes aims to allocate disk space in chunks of at least eight blocks where 

possible. 

 Once a free block has been identified, the search is extended backward until an 

allocated block is encountered. When a free byte is found in the bitmap, this backward 

extension prevents ext3 from leaving a hole between the most recently allocated block in 

the previous nonzero byte and the zero byte found.  

 Once the next block to be allocated has been found by either bit or byte search, ext3 

extends the allocation forward for up to eight blocks and preallocates these extra blocks to 

the file. This preallocation helps to reduce fragmentation during interleaved writes to 

separate files and also reduces the CPU cost of disk allocation by allocating multiple blocks 

simultaneously. The preallocated blocks are returned to the free-space bitmap when the 

file is closed. 

 Figure  5.7  illustrates  the  allocation  policies.  Each  row  represents  a  sequence  of  

set  and  unset  bits  in  an allocation bitmap, indicating used and free blocks on disk. In the 

first case, if we can find any free blocks sufficiently near  the  start  of  the  search,  then  

we  allocate  them  no  matter  how  fragmented  they  may  be.   

 The  fragmentation  is partially compensated for by the fact that the blocks are close 

together and can probably all be read without any disk seeks. Furthermore, allocating them 

all to one file is better in the long run than allocating isolated blocks to separate files once 

large free areas become scarce on disk. In the second case, we have not immediately found 

a free block close by, so we search forward for an entire free byte in the bitmap. If we 

allocated that byte as a whole, we would end up creating a fragmented area of free space 
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between it and the allocation preceding it. Thus, before allocating, we back up to  make  

this  allocation  flush  with  the  allocation  preceding  it,  and  then  we  allocate  forward  

to  satisfy  the  default allocation of eight blocks. 

  

Journaling 

 The ext3 file system supports a popular feature called journaling, whereby 

modifications to the file system are written sequentially to a journal. A set of operations 

that performs a specific task is a transaction. Once a transaction is written to the journal, 

it is considered to be committed.  

 Meanwhile, the journal entries relating to the transaction are replayed  across  the  

actual  file-system  structures.  As  the  changes  are  made,  a  pointer  is  updated  to  

indicate  which actions  have  completed  and  which  are  still  incomplete.  When  an  

entire committed  transaction  is  completed,  it  is removed from the  journal.  The 

journal,  which  is  actually a  circular  buffer,  may be in a  separate section  of  the file 

system, or it may even be on a  separate disk spindle. It is more efficient, but more 

complex, to have it under separate read – write heads, thereby decreasing head 

contention and seek times. 

 If the system crashes, some transactions may remain in the journal. Those 

transactions were never completed to the  file system  even though they  were committed  

by the  operating system,  so they  must  be completed  once the system recovers.  The 
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transactions  can be  executed from the pointer  until the  work  is  complete,  and the file-

system structures  remain  consistent.  The  only  problem  occurs  when  a  transaction  has  

been  aborted  —  that  is,  it  was  not committed before the system crashed.  

Any changes from those transactions that were applied to the file system must be undone, 

again preserving the consistency of the file system. This recovery is all that is needed after 

a crash, eliminating all problems with consistency checking. 

 Journaling file systems may perform some operations faster than non-journaling 

systems, as updates proceed much faster  when they are applied to the in-memory journal 

rather  than directly to the on-disk data  structures.  The reason  for  this  improvement  is  

found  in  the  performance  advantage  of  sequential  I/O  over  random  I/O.   

 Costly synchronous random writes to the file system are turned into much less costly 

synchronous sequential writes to the file system’s journal. Those changes, in turn, are 

replayed asynchronously via random writes to the appropriate structures. The overall 

result is a significant gain in performance of file-system metadata-oriented operations, 

such as file creation and deletion. Due to this performance improvement, ext3 can be 

configured to journal only metadata and not file data. 

 

The Linux Process File System 

 The flexibility of the Linux VFS enables us to implement a file system that does not 

store data persistently at all but rather provides an interface to some other functionality. 

The Linux process file system, known as the /proc file system, is an example of a file system 

whose contents are not actually stored anywhere but are computed on demand according 

to user file I/O requests. 

 A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc file system 

as an efficient interface to the kernel’s process debugging support. Each subdirectory of 

the file system corresponded not to a directory on any disk but rather to an active process 

on the current system. A listing of the file system reveals one directory per process, with 

the directory name being the ASCII decimal representation of the process’s unique process 

identifier (PID). 

 Linux implements such a /proc file system but extends it greatly by adding a number 

of extra directories and text files under the file system’s root directory. These new entries 

correspond to various statistics about the kernel and the associated loaded drivers. The 
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/proc file system provides a way for programs to access this information as plain text files; 

the standard UNIX user environment provides powerful tools to process such files.  

 For example, in the past, the traditional  UNIX  ps  command  for  listing  the  states  

of  all  running  processes  has  been  implemented  as  a  privileged process  that  reads  the  

process  state  directly  from  the  kernel’s  virtual  memory.  Under  Linux,  this  command  

is implemented as an entirely unprivileged program that simply parses and formats the 

information from /proc. 

 The /proc file system must implement two things: a directory structure and the file 

contents within. Because a UNIX file system is defined as a set of file and directory inodes 

identified by their inode numbers, the /proc file system must  define a  unique and 

persistent inode number  for  each directory and the associated files.   

 Once such a mapping exists, the file system can use this inode number to identify just 

what operation is required when a user tries to read from a particular file inode or to 

perform a lookup in a particular directory inode. When data are read from one of these 

files,  the /proc  file system will collect the appropriate information,  format it into textual 

form,  and place it  into the requesting process’s read buffer. 

 The mapping from inode number to information type splits the inode number into 

two fields. In Linux, a PID is 16 bits in size, but an inode number is 32 bits. The top 16 bits 

of the inode number are interpreted as a PID, and the remaining bits define what type of 

information is being requested about that process. 

 

 A PID of zero is not valid, so a zero PID field in the inode number is taken to mean 

that this inode contains global rather  than process-specific information.  Separate global 

files  exist  in /proc to report information such as the kernel version, free memory, 

performance statistics, and drivers currently running. 

 

Input and Output 

 To the user, the I/O system in Linux looks much like that in any UNIX system. That is, 

to the extent possible, all device drivers appear as normal files. Users can open an access 

channel to a device in the same way they open any other  file —  devices  can appear  as  

objects  within the  file system.   
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 The system administrator  can create special files within a file system that contain 

references to a specific device driver, and a user opening such a file will be able to read 

from and write to the device referenced. By using the normal file-protection system, which 

determines who can access which file, the administrator can set access permissions for 

each device. 

 Linux splits all devices into three classes: block devices, character devices, and 

network devices. Figure 5.8 illustrates the overall structure of the device-driver system. 

 

Block devices  

 Include all devices that allow random access to completely independent, fixed-sized 

blocks of data,  including  hard  disks  and  floppy  disks,  CD-ROMs  and  Blu-ray  discs,  and  

flash  memory.  Block  devices  are typically used to store file systems, but direct access to 

a block device is also allowed so that programs can create and repair the file system that 

the device contains. Applications can also access these block devices directly if they wish. 

For  example,  a  database application may prefer  to perform its own fine-tuned layout of 

data  onto a  disk rather  than using the general-purpose file system. 

 

Character  devices   

 Include  most  other  devices,  such  as  mice  and  keyboards.  The  fundamental  

difference between block and character devices is random access block devices are 

accessed randomly,  while character devices are accessed serially. For example, seeking to 

a certain position in a file might be supported for a DVD but makes  no sense for a pointing 

device such as a mouse. 

 

Network devices   

 They are dealt  with differently from block and character  devices.  Users cannot  

directly transfer data to network devices. Instead, they must communicate indirectly by 

opening a connection to the kernel’s networking subsystem. 

 

Block Devices 

Block devices provide the main interface to all disk devices in a system. Performance is 

particularly important for disks, and the block-device system must provide functionality to 
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ensure that disk access is as fast as possible. This functionality is achieved through the 

scheduling of I/O operations. 

  

 In the context of block devices, a block represents the unit with which the kernel 

performs I/O. When a block is read into memory, it is stored in a buffer. The request 

manager is the layer of software that manages the reading and writing of buffer contents 

to and from a block-device driver. 

 

 A  separate  list  of  requests  is  kept  for  each  block-device  driver.  Traditionally,  

these  requests  have  been scheduled  according  to  a  unidirectional-elevator  (C-SCAN)  

algorithm  that  exploits  the  order  in  which  requests  are inserted in and removed from 

the lists.  The request  lists are maintained in sorted order  of  increasing  starting-sector 

number.  When  a  request  is  accepted  for  processing  by  a  block-device  driver,  it  is  

not  removed  from  the  list.   

 It  is removed only after the I/O is complete, at which point the driver continues with 

the next request in the list, even if new requests have been inserted in the list  before the 

active request.  As new I/O requests are made,  the request manager attempts to merge 

requests in the lists. 

 Linux  kernel version 2.6  introduced a  new I/O  scheduling algorithm.  Although a  

simple  elevator  algorithm remains available,  the default I/O scheduler  is now the 

Completely Fair Queueing (CFQ)  scheduler. The CFQ I/O scheduler  is  fundamentally  

different  from  elevator-based  algorithms.  Instead  of  sorting  requests  into  a  list,  CFQ 

maintains a set of lists by default, one for each process. Requests originating from a process 

go in that process’s list. For example, if two processes are issuing I/O requests, CFQ will 

maintain two separate lists of requests, one for each process. The lists are maintained 

according to the C-SCAN algorithm. 
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Character Devices 

 A character-device driver can be almost any device driver that does not offer random 

access to fixed blocks of data. Any character-device drivers registered to the Linux kernel 

must also register a set of functions that implement the file I/O operations that the driver 

can handle.  The kernel performs almost no preprocessing of a file read or write request 

to a character device. It simply passes the request to the device in question and lets the 

device deal with the request. 

 The  main  exception  to  this  rule  is  the  special  subset  of  character-device  drivers  

that  implement  terminal devices. The kernel maintains a standard interface to these 

drivers by means of a set of tty struct structures. Each of these structures provides buffering 

and flow control on the data stream from the terminal device and feeds those data to a 

line discipline. 

 A  line  discipline  is  an  interpreter  for  the  information  from  the  terminal  device.  

The  most  common  line discipline is the tty discipline, which glues the terminal’s data 

stream onto the standard input and output streams of a user’s  running  processes,  

allowing  those  processes  to  communicate  directly  with  the  user’s  terminal.   

 This  job  is complicated  by  the  fact  that  several  such  processes  may  be  running  

simultaneously,  and  the  tty  line  discipline  is responsible for attaching and detaching the 

terminal’s input and output from the various processes connected to it as those processes 

are suspended or awakened by the user. 
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 Other line disciplines also are implemented that have nothing to do with I/O to a user 

process. The PPP and SLIP networking protocols are ways of encoding a networking 

connection over a terminal device such as a serial line.  

 These  protocols  are  implemented  under  Linux  as  drivers  that  at  one  end  appear  

to  the  terminal  system  as  line disciplines and at the other end appear to the networking 

system as network-device drivers. After one of theseline disciplines has been enabled on a 

terminal device,  any data appearing on that terminal will be routed directly to the 

appropriate network-device driver.  


