

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

IT 8075 – SOFTWARE PROJECT MANAGEMENT

Extreme Programming

One of the foremost Agile methodologies is called Extreme Programming (XP), which

involves a high degree of participation between two parties in the software exchange: customers

and developers. The former inspires further development by emphasizing the most useful features

of a given software product through testimonials. The developers, in turn, base each successive set

of software upgrades on this feedback while continuing to test new innovations every few weeks.

XP has its share of pros and cons. On the upside, this Agile methodology involves a high

level of collaboration and a minimum of up-front documentation. It’s an efficient and persistent

delivery model. However, the methodology also requires a great level of discipline, as well as

plenty of involvement from people beyond the world of information technology. Furthermore, in

order for the best results, advanced XP proficiency is vital on the part of every team member.

Extreme programming (XP) is a software development methodology which is intended

to improve software quality and responsiveness to changing customer requirements. As a

type of agile software development, it advocates frequent "releases" in short development cycles,

which is intended to improve productivity and introduce checkpoints at which new customer

requirements can be adopted.

Other elements of extreme programming include: programming in pairs or doing extensive

code review, unit testing of all code, avoiding programming of features until they are actually

needed, a flat management structure, code simplicity and clarity, expecting changes in the

customer's requirements as time passes and the problem is better understood, and frequent

communication with the customer and among programmers. The methodology takes its name

from the idea that the beneficial elements of traditional software engineering practices are taken

to "extreme" levels. As an example, code reviews are considered a beneficial practice; taken to

the extreme, code can be reviewed continuously, i.e. the practice of pair programming.

Activities

XP describes four basic activities that are performed within the software development

process: coding, testing, listening, and designing. Each of those activities is described below.

Coding

The advocates of XP argue that the only truly important product of the system development

process is code – software instructions that a computer can interpret. Without code, there is no

working product. Coding can also be used to figure out the most suitable solution. Coding can

https://en.wikipedia.org/wiki/Software_development_methodology
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Pair_programming
https://en.wikipedia.org/wiki/Code_review
https://en.wikipedia.org/wiki/Code_review
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Code_review
https://en.wikipedia.org/wiki/Pair_programming

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

IT 8075 – SOFTWARE PROJECT MANAGEMENT

also help to communicate thoughts about programming problems. A programmer dealing with a

complex programming problem, or finding it hard to explain the solution to fellow

programmers, might code it in a simplified manner and use the code to demonstrate what he or

she means. Code, say the proponents of this position, is always clear and concise and cannot be

interpreted in more than one way. Other programmers can give feedback on this code by also

coding their thoughts.

Testing

Extreme programming's approach is that if a little testing can eliminate a few flaws, a lot of

testing can eliminate many more flaws.

 Unit tests determine whether a given feature works as intended. Programmers write as many

automated tests as they can think of that might "break" the code; if all tests run successfully,

then the coding is complete. Every piece of code that is written is tested before moving on to

the next feature.

 Acceptance tests verify that the requirements as understood by the programmers satisfy the

customer's actual requirements.

System-wide integration testing was encouraged, initially, as a daily end-of-day activity, for early

detection of incompatible interfaces, to reconnect before the separate sections diverged widely

from coherent functionality. However, system-wide integration testing has been reduced, to

weekly, or less often, depending on the stability of the overall interfaces in the system.

Listening

Programmers must listen to what the customers need the system to do, what "business

logic" is needed. They must understand these needs well enough to give the customer feedback

about the technical aspects of how the problem might be solved, or cannot be solved.

Communication between the customer and programmer is further addressed in the planning

game.

Designing

From the point of view of simplicity, of course one could say that system development

doesn't need more than coding, testing and listening. If those activities are performed well, the

result should always be a system that works. In practice, this will not work. One can come a long

way without designing but at a given time one will get stuck. The system becomes too complex and

the dependencies within the system cease to be clear. One can avoid this by creating a design

https://en.wikipedia.org/wiki/Unit_test
https://en.wikipedia.org/wiki/Acceptance_test
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Business_logic
https://en.wikipedia.org/wiki/Business_logic
https://en.wikipedia.org/wiki/Planning_game
https://en.wikipedia.org/wiki/Planning_game

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

IT 8075 – SOFTWARE PROJECT MANAGEMENT

structure that organizes the logic in the system. Good design will avoid lots of dependencies within a

system; this means that changing one part of the system will not affect other parts of the system.

Advantages

 Robustness

 Resilience

 Cost savings

 Lesser risks

Disadvantages

 It assumes constant involvement of customers

 Centered approach rather than design-centered approach

 Lack of proper documentation

	Extreme Programming
	Activities
	Coding
	Testing
	Listening
	Designing
	Advantages
	Disadvantages

