UNIT-I

TESTING THE HYPOTHESIS

(χ^2) Chi-Square Test

1.5 χ^2 test of Goodness of Fit

- χ^2 test is used to test whether differences between observed and expected frequencies are significant.
- χ^2 is used to test the independence of attributes
- The test statistic $\chi^2 = \sum \left[\frac{(o-E)^2}{E}\right]$
- Where O Observed Frequency
- E Expected Frequency
- If the data is given in a series of "n" numbers then degrees of freedom

= n - 1.

Note:

- If the case of Binomial Distribution the degrees of freedom = n 1
- Poisson distribution the degrees of freedom = n 2
- Normal distribution the degrees of freedom = n 3

1.The following table gives the number of aircraft accident that occurred during the various days of the week. Test whether the accidents are uniformly distributed over the week.

Days	: Mon	Tue	Wed	Thu	Fri	Sat	Total
No. of acc	idents : 14	18	12	11	15	14	84
Solution:							

The expected number of accidents on any day $=\frac{84}{6}=14$

Observed Frequency	Expected Frequency	(O – E)	$\frac{(o-E)^2}{E}$
14	14	0	0
18	14	4	1.143

Let H_0 : The accidents occur uniformly over the week.

12	14	-2	0.286
11	14	-3	0.643
15	14	1	0.071
14	14	0	0

Now $\chi^2 = \sum \left[\frac{(o-E)^2}{E}\right] = 2.143$

Number of degrees of freedom V = n - 1 = 7 - 1 = 6

Critical value: The tabulated value of χ^2 at 5% for 6 d. f is 12.59

Conclusion:

Since $\chi^2 = 2.143 < 12.59$, then the null hypothesis H_0 is accepted.

i.e., we conclude that the accidents are uniformly distributed over the week

1. 4 coins were tossed 160 times and the following results were obtained. No. of heads : 0 1 2 3 4

Frequency : 19 50 52 30 9

Test the goodness of fit with the help of χ^2 on the assumption that the coins are unbiased

Solution:

Set the null hypothesis: H_0 : The coins are unbiased.

The probability if getting the success of heads is $p = \frac{1}{2}$

- And $q = 1 p = 1 \frac{1}{2} = \frac{1}{2}$
- When 4 coins are tossed, the probability of getting "r" heads is given by $P(X = r) = nC_r p^r q^{n-r}$, r = 0, 1, 2, ...
- The expected frequency of getting 0, 1, 2, 3, 4 heads are given by

•
$$P(X = 0) = 160 \times 4C_0 \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^{4-0} = 10$$

- $P(X = 1) = 160 \times 4C_1 \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^{4-1} = 40$
- $P(X = 2) = 160 \times 4C_2 \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^{4-2} = 60$

•
$$P(X = 3) = 160 \times 4C_3 \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^{4-3} = 40$$

•
$$P(X = 4) = 160 \times 4C_0 \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^{4-4} = 10$$

Observed Frequency	Expected Frequency	(O – E)	$\frac{(o-E)^2}{E}$	
19	10	-9	8.1	
50	40	10	2.5 G	NEER
52	60	-8	1.067	
30	40	-10	2.5	
9	10	-1	0.1	

Now $\chi^2 = \sum \left[\frac{(o-E)^2}{E}\right] = 14.267$

Number of degrees of freedom V = n - 1 = 5 - 1 = 4

Critical value: The tabulated value of χ^2 at 5% for 4 d. f is 9.488

Conclusion:

Since $\chi^2 = 14.267 > 9.488$, then the null hypothesis H_0 is rejected.

i.e., The coin are biased

VE OPTIMIZE OUTSPRE