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LINUX- SCHEDULING 

 Scheduling is the job of allocating CPU time to different tasks within an operating 

system. Linux, like all UNIX systems, supports preemptive multitasking. 

 While scheduling is normally thought of as the running and interrupting of processes, 

in Linux, scheduling also includes the running of the various kernel tasks 

 Running kernel tasks encompasses both tasks that are requested by a running 

process and tasks that execute internally on behalf of a device driver 

Process Scheduling 

 Linux has two separate process-scheduling algorithms. One is a time-sharing 

algorithm for fair, preemptive scheduling among multiple processes. The other is 

designed for real-time tasks, where absolute priorities are more important than 

fairness. 

 As of 2.5, new scheduling algorithm – preemptive, priority-based, known as O(1) 

o Real-time range 0 to 99 

o nice value 20 to 19 

o Had challenges with interactive performance 

 Version 2.6 introduced Completely Fair Scheduler (CFS) 

 

CFS 

 Eliminates traditional, common idea of time slice 

 Instead all tasks allocated portion of processor’s time 

 CFS calculates how long a process should run as a function of total number of tasks 

 N runnable tasks means each gets 1/N of processor’s time 

 Then weights each task with its nice value 

o Smaller nice value -> higher weight (higher priority) 

 CFS then runs each process for a “time slice” proportional to the process’s weight 

divided by the total weight of all runnable processes. 

The time slice is the length of time — the slice of the processor that a process is 

afforded. Traditional UNIX systems give processes a fixed time slice, perhaps with a boost 

or penalty for high- or low-priority processes, respectively.  
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A process may run for the length of its time slice, and higher-priority processes  run 

before lower-priority processes.  It is a  simple algorithm that  many non-UNIX  systems  

employ.   

CFS introduced a new scheduling algorithm called fair scheduling that eliminates 

time slices in the traditional sense. Instead of time slices, all processes are allotted a 

proportion of the processor’s time. CFS calculates how long a process should run as a 

function of the total number of runnable processes. 

To start, CFS says that if there are N runnable processes, then each should be 

afforded 1/N of the processor’s time.  CFS  then  adjusts  this  allotment  by  weighting  

each  process’s  allotment  by  its  nice  value.   

 Processes with the default nice value have a weight of 1 their priority is 

unchanged. Processes with a smaller nice value (higher priority) receive a higher weight, 

while processes with a larger nice value (lower priority) receive a lower weight. CFS then 

runs each  process  for  a  “time  slice”  proportional  to  the  process’s  weight  divided  by  

the  total  weight  of  all  runnable processes. 

To  calculate  the  actual  length  of  time  a  process  runs,  CFS  relies  on  a  

configurable  variable  called  target latency, which is the interval of time during which 

every runnable task should run at least once. For example, assume that the target latency 

is 10 milliseconds 

With  the  switch  to  fair  scheduling,  CFS  behaves  differently  from  traditional  

UNIX  process  schedulers  in several ways. Most notably, as we have seen, CFS eliminates 

the concept of a static time slice. Instead, each process receives a proportion of the 

processor’s time.  How long that allotment is depends on how many other  processes are 

runnable. This approach solves several problems in mapping priorities to time slices 

inherent in preemptive,  priority- based scheduling algorithms.  
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Real-Time Scheduling 

Linux’s real-time scheduling algorithm is significantly simpler than the fair 

scheduling employed for standard time-sharing processes. Linux implements the two real-

time scheduling classes required by POSIX.1b: first-come, first- Served (FCFS) and  round-

robin.   

 In  both  cases,  each  process  has  a  priority  in  addition  to  its  scheduling  

class.  The scheduler always runs the process with the highest priority. Among processes 

of equal priority, it runs the process that has been waiting  longest.  The  only  difference  

between  FCFS  and  round-robin  scheduling  is  that  FCFS  processes continue to run until 

they either exit or block, whereas a round-robin process will be preempted after a while 

and will be moved to the end of the scheduling queue, so round-robin processes of equal 

priority will automatically time-share among themselves. 

Linux’s real-time scheduling is soft rather than hard real time. The scheduler offers 

strict guarantees about the relative priorities of real-time processes,  but the kernel does  

not offer  any guarantees about how quickly a  real-time process will be scheduled once 

that process becomes  runnable.  In contrast, a  hard real-time system can guarantee a 

minimum latency between when a process becomes runnable and when it actually runs. 

 

Kernel Synchronization 

 The  way  the  kernel  schedules  its  own  operations  is  fundamentally  different  

from  the  way  it  schedules processes. A request for kernel-mode execution can occur in 

two ways.  

 A running program may request an operating- system service,  either  explicitly  via  

a  system  call  or  implicitly  for  example,  when  a   fault  occurs.  Alternatively,  a device 

controller may deliver a hardware interrupt that causes the CPU to start executing a kernel-

defined handler for that interrupt. 

The problem for the kernel is that all these tasks may try to access the same 

internal data  structures.  If one kernel  task  is  in  the  middle  of  accessing  some  data  

structure  when  an  interrupt  service  routine  executes,  then  that service routine cannot 

access or modify the same data without risking data corruption.  

 This fact relates to the idea of critical sections portions of code that access 

shared data and thus must not be allowed to execute concurrently. As a result, kernel 
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synchronization involves much more than just process scheduling. A framework is 

required that allows kernel tasks to run without violating the integrity of shared data. 

 Prior to version 2.6, Linux was a non preemptive kernel, meaning that a process 

running in kernel mode could not be preempted even if a higher-priority process became 

available to run. With version 2.6, the Linux kernel became fully preemptive. Now, a task can 

be preempted when it is running in the kernel 

The Linux kernel provides spinlocks and semaphores (as well as reader  – writer 

versions of these two locks) for  locking  in  the  kernel.   

 On  SMP  machines,  the  fundamental  locking  mechanism  is  a  spinlock,  

and  the  kernel  is designed  so  that  spinlocks  are  held  for  only  short  durations.  On  

single-processor  machines,  spinlocks  are  not appropriate  for  use  and  are  replaced  by  

enabling  and  disabling  kernel  preemption.   

 That  is,  rather  than  holding  a spinlock,  the task disables kernel 

preemption.  When the task would otherwise release the spinlock, it enables kernel 

preemption. This pattern is summarized below: 

 

Linux  uses  an interesting approach to disable and  enable  kernel pre-emption.   

It provides  two simple  kernel interfaces preempt disable() and preempt enable(). 

In addition, the kernel is not preemptible if a kernel-mode task is holding  a  spinlock.   

To  enforce  this  rule,  each  task  in  the  system  has  a  thread-info  structure  that  

includes  the  field preempt count, which is a counter indicating the number of locks being 

held by the task.  

The counter is incremented when a lock is acquired and decremented when a lock 

is released.  

If the value of preempt count for the task currently running is greater than zero, it 

is not safe to preempt the kernel, as this task currently holds a lock. If the count is zero, 

the kernel can safely be interrupted, assuming there are no outstanding calls to preempt 

disable(). 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

  CS8493-OPERATING SYSTEMS 

 

Spinlocks  along with the enabling and disabling of kernel preemption are used in 

the kernel only when the lock is held for short durations. When a lock must be held for 

longer periods, semaphores are used. 

The  second  protection  technique  used  by  Linux  applies  to  critical  sections  

that  occur  in  interrupt  service routines.  The basic  tool  is  the  processor’s  interrupt-

control  hardware.  By disabling  interrupts  (or  using  spinlocks) during a critical section, 

the kernel guarantees that it can proceed without the risk of concurrent access to shared 

data structures. 

However, there is a penalty for disabling interrupts.  On most  hardware  

architectures,  interrupt  enable  and disable instructions are not cheap. More importantly, 

as long as interrupts remain disabled, all I/O is suspended, and any  device  waiting  for  

servicing  will  have  to  wait  until  interrupts  are  reenabled;  thus,  performance  

degrades.   

 To address this problem, the Linux kernel uses a synchronization 

architecture that allows long critical sections to run for their  entire duration without  

having interrupts disabled.  This  ability is  especially useful in the networking code.  An 

interrupt in a network device driver can signal the arrival of an entire network packet, 

which may result in a great deal of code being executed to disassemble, route, and 

forward that packet within the interrupt service routine. 

Linux implements this architecture by separating interrupt service routines into 

two sections: the top half and the  bottom  half.   

 The  top  half  is  the  standard  interrupt  service  routine  that  runs  with  

recursive  interrupts  disabled. Interrupts of the same number (or line) are disabled, but 

other interrupts may run.  

 The bottom half of a service routine is run, with all interrupts enabled, by a 

miniature scheduler that ensures that bottom halves never interrupt themselves. The 

bottom-half scheduler is invoked automatically whenever an interrupt service routine 

exits. 

This  separation  means  that  the  kernel  can  complete  any  complex  processing  that  

has  to  be  done  in  response  to  an interrupt without worrying about being interrupted 

itself. If another interrupt occurs while a bottom half is executing, then  that  interrupt  

can  request  that  the  same  bottom  half  execute,  but  the  execution  will  be  deferred  
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until  the  one currently  running  completes.  Each  execution  of  the  bottom  half  can  

be  interrupted  by  a  top  half  but  can  never  be interrupted by a similar bottom half. 

The top-half/bottom-half architecture is completed by a mechanism for disabling 

selected bottom halves while executing  normal,  foreground  kernel  code.  The  kernel  

can  code  critical  sections  easily  using  this  system.   

Interrupt handlers  can code their  critical sections  as  bottom halves;  and  when 

the foreground kernel  wants  to enter  a  critical section, it can disable any relevant bottom 

halves to prevent any other critical sections from interrupting it.  

 At the end of the critical section, the kernel can reenable the bottom halves 

and run any bottom-half tasks that have been queued by top-half interrupt service 

routines during the critical section. 

   

 Figure 5.2 summarizes the various levels of interrupt protection within the kernel.  

Each level may be interrupted by code running at a higher level but will never be 

interrupted by code running at the same or a lower level. Except for user-mode code, user 

processes can always be preempted by another process when a time-sharing scheduling 

interrupt occurs. 

 

Symmetric Multiprocessing 

The Linux 2.0 kernel was the first stable Linux kernel to support symmetric 

multiprocessor (SMP) hardware, allowing separate processes to execute in parallel on 

separate processors. The original implementation of SMP imposed the restriction that only 

one processor at a time could be executing kernel code. 
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In  version  2.2  of  the  kernel,  a  single  kernel  spinlock  (sometimes  termed  BKL  

for  “big  kernel  lock”)  was created to allow multiple processes (running on different 

processors) to be active in the kernel concurrently.  

However, the  BKL  provided  a  very  coarse  level  of  locking  granularity,  resulting  

in  poor  scalability  to  machines  with  many processors and processes.  Later releases of 

the kernel made the SMP implementation more scalable by splitting this single kernel 

spinlock into multiple locks, each of which protects only a small subset of the kernel’s data 

structures.  

Such spinlocks are described in Section 18.5.3. The 3.0 kernel provides additional 

SMP enhancements, including ever- finer locking, processor affinity, and load-balancing 

algorithms. 

 


