
Computation of DFT using FFT  
algorithm

• FFT is a highly efficient procedure for  
computing the DFT of the finite series &  
requires less no. of computations than that of  
direct evaluation of DFT.
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Why FFT is needed?

DFT

• To evaluate N-point DFT

• It requires

• N(N+1) complex additions

• N2 complex multiplications

complex additions

FFT

• To evaluate N-point DFT

• It requires

•

•

• complex

multiplications

N log2 N

2

N
log N

2
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What is radix-2 FFT?

• If the number of output points N can be  
expressed as a power of 2, i.e N= 2M ,M is  
integer.

• Then this algorithm is known as radix-2 FFT  
algorithm.
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Advantages of FFT over DFT

• FFT is the algorithm used to compute DFT fast

• Computationally efficient than direct  
computation of DFT

• Exploit periodicity and symmetry properties of  
DFT

• It makes use of the periodicity and symmetry
properties of twiddle factor to reduce the  
DFT computation time.

k 

NW
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Applications of FFT

• Linear filtering

• Correlation

• Spectrum Analysis

• Properties of Twiddle  
factor:

Symmetry Property

WkN / 2  Wk  

N N

Periodicity Property

WkN  W k   

N N
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Radix-2 DIT FFT algorithm

• The N-point DFT of a sequence x(n) converts the  
time domain N point sequence x(n) to a frequency  
domain N-point sequence X(k).

• In DIT the x(n) is decimated and smaller point  
DFTs are performed.

• The results of smaller point DFTs are combined to  
get the result of N-point DFT.

• Here, the N-point DFT can be realized from two  
no. of N/2 point DFTs, the N/2 point DFT can be  
realized from two no. of N/4 point DFTs and so  
on.
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Radix-2 DIT FFT algorithm Cont..

• Normal order

• x(0)-000

• x(1)-001

• x(2)-010

• x(3)-011

• x(4)-100

• x(5)-101

• x(6)-110

• x(7)-111

• Bit reverse order

• x(0)-000

• x(4)-100

• x(2)-010

• x(6)-110

• x(1)-001

• x(5)-101

• x(3)-011

• x(7)-111

Output should  
be in normal  
order
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Radix-2 DIT FFT algorithm Cont..
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First stage of computation

V11 (0)  x(0) x(4)

V12 (0)  x(2) x(6)

V21 (0)  x(1) x(5)

V22 (0)  x(3) x(7)

V11 (1)  x(0) x(4)

V12 (1)  x(2)  x(6)

V21 (1)  x(1)  x(5)

V22 (1)  x(3)  x(7)
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First stage of computation
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Second stage of computation

F (0) V (0) W 0V (0)
1 11 4 12

F (1)V (1) W 1V (1)
1 11 4 12

F (2) V (0) W 0V (0)
1 11 4 12

F (3) V (1)W 1V (1)
1 11 4 12

F (0) V (0) W 0V (0)
2 21 4 22

(1)1

2 21 4 22F (1) V (1)  WV

F (2) V (0) W 0V (0)
2 21 4 22

F (3) V (1)W 1V (1)
2 21 4 22
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Second stage of computation1.7
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Third stage of computation

X (0)  F (0) W 0F (0) X (4)  F (0)W 0F (0)
1 8 2 1 8 2

X (1)  F (1)W 1F (1) X (5)  F (1)W 1F (1)
1 8 2 1 8 2

X (2)  F (2) W 2F (2) X (6)  F (2) W 2F (2)
1 8 2 1 8 2

X (3)  F (3)W 3F (3) X (7)  F (3)W 3F (3)
1 8 2 1 8 2
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Third stage of computation
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Butterfly diagram for 8-point  
radix-2 DIT FFT algorithm
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Butterfly diagram for 8-point  
radix-2 DIT FFT algorithm
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Butterfly diagram for 4-point  
radix-2 DIT FFT algorithm
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Calculation of Twiddle factor values
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Calculation of Twiddle factor values

44
8  0.707  j0.707 j sin e  cosW 1  e
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Radix-2 DIF FFT algorithm

• In DIF algorithm, the frequency domain  
sequence X(k) is decimated.

• In this algorithm, N-point time domain  
sequence is converted to two number of N/2  
point sequence.

• Then each N/2 point sequence is converted  
into two number of N/4 point sequence.

• This process is continued until N/2 number of  
2 point sequences is obtained
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Radix-2 DIF FFT algorithm Cont..

• Normal order

• x(0)-000

• x(1)-001

• x(2)-010

• x(3)-011

• x(4)-100

• x(5)-101

• x(6)-110

• x(7)-111

• Bit reverse order

• x(0)-000

• x(4)-100

• x(2)-010

• x(6)-110

• x(1)-001

• x(5)-101

• x(3)-011

• x(7)-111

Input should
be in normal
order
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Radix-2 DIF FFT algorithm
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Butterfly diagram for 8-point  
radix-2 DIF FFT algorithm
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Radix-2 DIF FFT algorithm
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Butterfly diagram for 4-point  
radix-2 DIF FFT algorithm
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Differences between DIT & DIF FFT  
algorithm

DIT FFT

• Time domain sequence is
decimated

• Input should be in bit  
reversed order & output will  
be in normal order

• Complex multiplication 
takes place before the add-
subtract operation

DIF FFT

• Frequency domain
sequence is decimated

• Input should be in normal 
order & output will be in bit  
reversed order

• Complex multiplication 
takes place after the add-
subtract operation
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Similarities in DIT & DIF algorithm

• For both algorithms the value of N should be  
such that N= 2M & there will be M stages of  
butterfly computation with N/2 butterfly per  
stage

• Both algorithms involve same number of  
operations. The total no. of complex additions
are & the total no. of complex

• Both algorithm require bit reversal at some  
place during computation

N log2 N

2
multiplications are N

log N
2
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Relationship between exponential forms and  

twiddle factors (W) for Periodicity = N

Sr.

No.

Exponential form Symbolic form

01 e-j2n/N = e-j2(n+N)/N
WN = WNn n+N

02 e-j2(n+N/2)/N = - e-j2n/N
WN = - WNn+N/2 n

03 e-j2k = e-j2Nk/N = 1
WN = 1

N+K

04 e-j2(2/N) = e-j2/(N/2)
WN = WN/2

2
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Matrix Relations
• The DFT samples defined by

where

. . . . .X [1 ]

.....x[1]

X [ N  1 ]  T

x [ N 1]T

X   X [ 0 ]

x   x[0]

 , 0  k  N 1x[n]WX[k]
N1

n0

can be expressed in NxN matrix as

kn
N

x(n)
 

X(k) 
n0 

N1
nk  

NW 

1.8

EC8553 Discrete Time Signal Processing

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



Matrix Relations

can be expanded as NXN DFT matrix







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


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2

1 (N1)
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(N 1) 

NNNN1
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N
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WW 2( N1)W (N1)

W 2( N1)W 4W 2

WW 21 W 1

W  1 NN



1 1 1 1

N  1


k  0

n k  

NW
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Matrix Relations

• Likewise, the IDFT is

 , 0  n  N1X[k]Wx[n]
N1

k0

can be expressed in NxN matrix form as

kn
N

xn

1.8



1


X(k)

N 1


n0
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Matrix Relations
can also be expanded as NXN DFT matrix





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W

Observe:
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
k0

nkWN 

1.8
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1
*

N1




n0

nk
NW

N

The inversion can be had by Hermitian conjugating j by –j and dividing by N.
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Zero-Padding

• Consider an L-point input sequence x(n)  
and a P-point impulse response h(n)

• The linear convolution of these two sequence  
y(n) has finite duration with length (L+P-1)

• For the circular convolution and linear  
convolution to be identical, the circular  
convolution must have a length of at least  
(L+P-1) points.
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Zero-Padding

• The circular convolution can be achieved by  
multiplying the DFTs of x(n) and h(n).

• Since the length of the linear convolution is  
(L+P-1) points, the DFTs that we compute  
must also be of at least that length, i.e., both  
x(n) and h(n) must augmented with sequence  
values of zero.

• The process is called Zero-Padding

1.8

EC8553 Discrete Time Signal Processing

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



Zero padding

• While finding N-point DFT of x(n), if the length
of x(n) is M then, we should add N-M number
of zeros in x(n).

• This is called zero padding

• Uses:

– Frequency spectrum is good

– DFT is used in linear filtering because of zero
padding
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