Computation of DFT using FFT algorithm

 FFT is a highly efficient procedure for computing the DFT of the finite series & requires less no. of computations than that of direct evaluation of DFT.

DFT Transform Pair
$$\begin{cases} X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}, 0 \le k \le N-1 \\ 1 & N-1 \end{cases}$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}, \ 0 \le n \le N-1$$

Twiddle factor
$$W_N = e^{-j\frac{2\pi}{N}}$$

Why FFT is needed?

DFT

- To evaluate N-point DFT
- It requires
- N(N+1) complex additions
- N² complex multiplications

FFT

- To evaluate N-point DFT
- It requires
- N log₂ N complex additions
- $\frac{N}{2}\log_2 N$ complex multiplications

OBSERVE OPTIMIZE OUTSPREAD

What is radix-2 FFT?

 If the number of output points N can be expressed as a power of 2, i.e N= 2^M, M is integer.

Then this algorithm is known as radix-2 FFT algorithm.

OBSERVE OPTIMIZE OUTSPREAD

Advantages of FFT over DFT

- FFT is the algorithm used to compute DFT fast
- Computationally efficient than direct computation of DFT
- Exploit periodicity and symmetry properties of DFT
- It makes use of the periodicity and symmetry properties of twiddle factor W_N^k to reduce the DFT computation time.

Applications of FFT

- Linear filtering
- Correlation
- Spectrum Analysis

 Properties of Twiddle factor:

Symmetry Property

$$W_N^{k+N/2} = -W_N^k$$

Periodicity Property

$$W_N^{k+N} = W_N^k$$

OBSERVE OPTIMIZE OUTSPREAD

Radix-2 DIT FFT algorithm

- The N-point DFT of a sequence x(n) converts the time domain N point sequence x(n) to a frequency domain N-point sequence X(k).
- In DIT the x(n) is decimated and smaller point DFTs are performed.
- The results of smaller point DFTs are combined to get the result of N-point DFT.
- Here, the N-point DFT can be realized from two no. of N/2 point DFTs, the N/2 point DFT can be realized from two no. of N/4 point DFTs and so on.

Radix-2 DIT FFT algorithm Cont..

Normal order

- x(0)-000
- x(1)-001
- x(2)-010 Output should be in normal
- x(3)-011 order
- x(4)-100
- x(5)-101
- x(6)-110
- x(7)-111

Bit reverse orde

- x(0)-000
- x(4)-100
- x(2)-010
- x(6)-110
- x(1)-001
- x(5)-101
- x(3)-011
- x(7)-111

GINEER

Radix-2 DIT FFT algorithm Cont..

First stage of computation

$$V_{11}(0) = x(0) + x(4)$$

$$V_{11}(1) = x(0) - x(4)$$

$$V_{12}(0) = x(2) + x(6)$$

$$V_{12}(1) = x(2) - x(6)$$

$$V_{21}(0) = x(1) + x(5)$$

$$V_{21}(1) = x(1) - x(5)$$

$$V_{22}(0) = x(3) + x(7)$$

$$V_{22}(1) = x(3) - x(7)$$

OBSERVE OPTIMIZE OUTSPREAD

First stage of computation

Second stage of computation

$$F_1(0) = V_{11}(0) + W_4^0 V_{12}(0)$$
 $F_2(0) = V_{21}(0) + W_4^0 V_{22}(0)$

$$F_1(1) = V_{11}(1) + W_4^1 V_{12}(1)$$
 $F_2(1) = V_{21}(1) + W_4^1 V_{22}(1)$

$$F_1(2) = V_{11}(0) - W_4^0 V_{12}(0)$$
 $F_2(2) = V_{21}(0) - W_4^0 V_{22}(0)$

$$F_1(3) = V_{11}(1) - W_{4}^{1}V_{12}(1)$$
 $F_2(3) = V_{21}(1) - W_{4}^{1}V_{22}(1)$

Second stage of computation

Third stage of computation

$$X(0) = F_1(0) + W_8^0 F_2(0)$$

$$X(4) = F_1(0) - W_8^0 F_2(0)$$

$$X(1) = F_1(1) + W_8^1 F_2(1)$$

$$X(5) = F_1(1) - W_8^1 F_2(1)$$

$$X(2) = F_1(2) + W_8^2 F_2(2)$$

$$X(6) = F_1(2) - W_8^2 F_2(2)$$

$$X(3) = F_1(3) + W_8^3 F_2(3)$$

$$X(7) = F_1(3) - W_8^3 F_2(3)$$

Third stage of computation

Butterfly diagram for 8-point radix-2 DIT FFT algorithm

Butterfly diagram for 8-point radix-2 DIT FFT algorithm

Butterfly diagram for 4-point radix-2 DIT FFT algorithm

Calculation of Twiddle factor values

$$W_N^k = e^{\frac{-j2\pi k}{N}}$$
 $W_N^2 = e^{j(-\frac{2\pi}{N}2)} = e^{j(-\frac{2\pi}{N/2})} = W_{N/2}$

$$W_2^0 = W_4^0 = W_8^0 = e^{\frac{-j2\pi(0)}{N}} = e^0 = 1$$

$$W_4^{1} = e^{\frac{-j2\pi(1)}{4}} = e^{\frac{-j2\pi(1)}{2}} = \cos\frac{\pi}{2} - j\sin\frac{\pi}{2} = -j$$

$$W_8^2 = e^{\frac{-j2\pi(2)}{8}} = e^{\frac{-j2\pi(2)}{2}} = \cos\frac{\pi}{2} - j\sin\frac{\pi}{2} = -j$$

Calculation of Twiddle factor values

$$W_8^{1} = e^{\frac{-j2\pi(1)}{8}} = e^{\frac{-j\pi}{4}} = \cos\frac{\pi}{4} - j\sin\frac{\pi}{4} = 0.707 - j0.707$$

$$W_8^3 = e^{\frac{-j2\pi(3)}{8}} = e^{\frac{-j3\pi}{4}} = \cos\frac{3\pi}{4} - j\sin\frac{3\pi}{4} = -0.707 - j0.707$$

OBSERVE OPTIMIZE OUTSPREAD

Radix-2 DIF FFT algorithm

- In DIF algorithm, the frequency domain sequence X(k) is decimated.
- In this algorithm, N-point time domain sequence is converted to two number of N/2 point sequence.
- Then each N/2 point sequence is converted into two number of N/4 point sequence.
- This process is continued until N/2 number of 2 point sequences is obtained

Radix-2 DIF FFT algorithm Cont..

Normal order

- x(0)-000
- x(1)-001 Input should
- x(2)-010 be in normal
- x(3)-011 order
- x(4)-100
- x(5)-101
- x(6)-110
- x(7)-111

Bit reverse orde

- x(0)-000
- x(4)-100
- x(2)-010
- x(6)-110
- x(1)-001
- x(5)-101
- x(3)-011
- x(7)-111

Radix-2 DIF FFT algorithm

Butterfly diagram for 8-point radix-2 DIF FFT algorithm

Radix-2 DIF FFT algorithm

Butterfly diagram for 4-point radix-2 DIF FFT algorithm

Differences between DIT & DIF FFT algorithm

DIT FFT

- Time domain sequence is decimated
- Input should be in bit reversed order & output will be in normal order
- Complex multiplication takes place before the addsubtract operation

DIF FFT

- Frequency domain sequence is decimated
- Input should be in normal order & output will be in bit reversed order
- Complex multiplication takes place after the addsubtract operation

Similarities in DIT & DIF algorithm

- For both algorithms the value of N should be such that N= 2^M & there will be M stages of butterfly computation with N/2 butterfly per stage
- Both algorithms involve same number of operations. The total no. of complex additions are $\frac{N \log_2 N}{2}$ & the total no. of complex multiplications are $\frac{N}{2} \log_2 N$
- Both algorithm require bit reversal at some place during computation

Relationship between exponential forms and twiddle factors (W) for Periodicity = N

Sr. No.	Exponential form	Symbolic form
01	$e^{-j2\pi n/N} = e^{-j2\pi(n+N)/N}$	$W_{N_n} = W_{N_{n+N}}$
02	$e^{-j2\pi(n+N/2)/N} = -e^{-j2\pi n/N}$	$W_{N_{n+N/2}} = -W_{N_{n}}$
03	$e^{-j2\pi k} = e^{-j2\pi Nk/N} = 1$	$W_{N_{N+K}} = 1$
04	$e^{-j2(2\pi/N)} = e^{-j2\pi/(N/2)}$	$W_{N_2} = W_{N/2}$

The DFT samples defined by

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad 0 \le k \le N-1$$

can be expressed in NxN matrix as

$$[X(k)] = \left[\sum_{n=0}^{N-1} W_N^{nk}\right] [x(n)]$$

where

$$\mathbf{X} = \begin{bmatrix} X [0] & X [1] & \cdots & X [N-1] \end{bmatrix}^{T}$$

$$\mathbf{X} = \begin{bmatrix} x[0] & x[1] & \cdots & x[N-1] \end{bmatrix}^{T}$$

 $\sum_{k=0}^{N-1} W_N^{nk}$ can be expanded as NXN **DFT matrix**

Likewise, the IDFT is

$$x[n] = \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \ 0 \le n \le N-1$$

can be expressed in NxN matrix form as

$$\mathbf{x[n]} = \begin{bmatrix} N-1 \\ \sum W_N^{nk} \\ n=0 \end{bmatrix}^{-1} [\mathbf{X(k)}]$$

 $\sum_{k=1}^{N-1} W_{N}^{-nk}$ can also be expanded as NXN **DFT matrix**

$$\sum_{k=0}^{N-1} W_N^{-nk} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & W_N^{-1} & W_N^{-2} & \square & W_N^{-(N-1)} \\ 1 & W_N^{-2} & W_N^{-4} & \square & W_N^{-2(N-1)} \\ \square & \sum_{N=1 \ W_N^{-nk}}^{N-1} W_N^{-2(N-1)} & \square & W_N^{-(N-1)^2} \end{bmatrix}$$

$$\sum_{k=0}^{N-1} W_N^{-nk} = \left[\frac{1}{N} \sum_{n=0}^{N-1} W_N^{nk} \right]^*$$

Observe:

The inversion can be had by Hermitian conjugating j by –j and dividing by N.

Zero-Padding

- Consider an L-point input sequence x(n) and a P-point impulse response h(n)
- The linear convolution of these two sequence
 y(n) has finite duration with length (L+P-1)
- For the circular convolution and linear convolution to be identical, the circular convolution must have a length of at least (L+P-1) points.

Zero-Padding

- The circular convolution can be achieved by multiplying the DFTs of x(n) and h(n).
- Since the length of the linear convolution is (L+P-1) points, the DFTs that we compute must also be of at least that length, i.e., both x(n) and h(n) must augmented with sequence values of zero.
- The process is called Zero-Padding

Zero padding

- While finding N-point DFT of x(n), if the length of x(n) is M then, we should add N-M number of zeros in x(n).
- This is called zero padding
- Uses:
 - Frequency spectrum is good
 - DFT is used in linear filtering because of zero padding