
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

PRIMITIVES FOR DISTRIBUTED COMMUNICATION

Blocking / Non blocking / Synchronous / Asynchronous
 Message send and message receive communication primitives are done through Send() and Receive(),

respectively.
 A Send primitive has two parameters: the destination, and the buffer in the user space that holds the data

to be sent.
 The Receive primitive also has two parameters: the source from which the data is to be received and the

user buffer into which the data is to be received.
There are two ways of sending data when the Send primitive is called:

 Buffered: The standard option copies the data from the user buffer to the kernel buffer. The data
later gets copied from the kernel buffer onto the network. For the Receive primitive, the buffered
option is usually required because the data may already have arrived when the primitive is
invoked, and needs a storage place in the kernel.

 Unbuffered: The data gets copied directly from the user buffer onto thenetwork.

Blocking primitives
 The primitive commands wait for the message to be delivered. The execution of the processes is

blocked.
 The sending process must wait after a senduntil an acknowledgement is made by the receiver.
 The receiving process must wait for the expected message from the sending process
 The receipt is determined by polling common buffer or interrupt
 This is a form of synchronization or synchronous communication.
 A primitive is blocking if control returns to the invoking process after the processing for the

primitive completes.

Non Blocking primitives
 If send is nonblocking, it returns control to the caller immediately, before the message is sent.
 The advantage of this scheme is that the sending process can continue computing in parallel with

the message transmission, instead of having the CPU go idle.
 This is a form of asynchronous communication.
 A primitive is non-blocking if control returnsback to the invoking process immediately after

invocation, even thoughthe operation has not completed.
 For a non-blocking Send, control returnsto the process even before the data is copied out of the

user buffer.
 For anon-blocking Receive, control returns to the process even before the datamay have arrived

from the sender.

Synchronous
 A Send or a Receive primitive is synchronous if both the Send() and Receive() handshake with

each other.
 The processing for the Send primitive completes only after the invoking processor learns
 that the other corresponding Receive primitive has also been invoked andthat the receive

operation has been completed.
 The processing for theReceive primitive completes when the data to be received is copied intothe

receiver’s user buffer.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Asynchronous
 A Send primitive is said to be asynchronous, if control returns back to the invoking process after

the data item to be sent has been copied out of the user-specified buffer.
 It does not make sense to define asynchronous Receive primitives.
 Implementing non -blocking operations are tricky.
 For non-blocking primitives, a return parameter on the primitive call returns a system-generated

handle which can be later used to check the status of completion of the call.
 The process can check for the completion:

o checking if the handle has been flagged or posted
o issue a Wait with a list of handles as parameters: usually blocks until one of the parameter

handles is posted.

The send and receive primitives can be implemented in four modes:
 Blocking synchronous
 Non- blocking synchronous
 Blocking asynchronous
 Non- blocking asynchronous

Four modes of send operation
Blocking synchronous Send:

 The data gets copied from the user buffer to the kernel buffer and is then sent over the network.
 After the data is copied to the receiver’s system buffer and a Receive call has been issued, an

acknowledgement back to the sender causes control to return to the process that invoked the Send
operation and completes the Send.

Non-blocking synchronous Send:
 Control returns back to the invoking process as soon as the copy of data from the user buffer to the

kernel buffer is initiated.
 A parameter in the non-blocking call also gets set with the handle of a location that the user process

can later check for the completion of the synchronous send operation.
 The location gets posted after an acknowledgement returns from the receiver.
 The user process can keep checking for the completion of the non-blocking synchronous Send by

testing the returned handle, or it can invoke the blocking Wait operation on the returned handle

Blocking asynchronous Send:
 The user process that invokes the Send is blocked until the data is copied from the user’s buffer to

the kernel buffer.

Non-blocking asynchronous Send:
 The user process that invokes the Send is blocked until the transfer of the data from the user’s buffer

to the kernel buffer is initiated.
 Control returns to the user process as soon as this transfer is initiated, and a parameter in the non-

blocking call also gets set with the handle of a location that the user process can check later using the
Wait operation for the completion of the asynchronous Send.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

 The asynchronous Send completes when the data has been copied out of the user’s buffer. The

checking for the completion may be necessary if the user wants to reuse the buffer from which the data was
sent.

Modes of receive operation
Blocking Receive:

The Receive call blocks until the data expected arrives and is written in the specified user buffer.
Then control is returned to the user process.
Non-blocking Receive:

 The Receive call will cause the kernel to register the call and return the handle of a location
that the user process can later check for the completion of the non-blocking Receive operation.

 This location gets posted by the kernel after the expected data arrives and is copied to the
user-specified buffer. The user process can check for the completion of the non-blocking
Receive by invoking the Wait operation on the returned handle.

1.6.2 Processor Synchrony

Processor synchrony indicates that all the processors execute in lock-step with their clocks
synchronized.

Since distributed systems do not follow a common clock, this abstraction is implemented using some form of barrier
synchronization to ensure that no processor begins executing the next step of code until all the processors have
completed executing the previous steps of code assigned to each of the processors.

Fig 1.12 a) Blocking synchronous send and blocking
receive

Fig 1.12 b) Non-blocking synchronous send and
blocking receive

Fig 1.12 c) Blocking asynchronous send Fig 1.12 d) Non-blocking asynchronous send

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

1.6.3 Libraries and standards
There exists a wide range of primitives for message-passing. The message-passing interface (MPI) library and the
PVM (parallel virtual machine) library are used largely by the scientific community

 Message Passing Interface (MPI): This is a standardized and portable message-passing system to
function on a wide variety of parallel computers. MPI primarily addresses the message-passing
parallel programming model: data is moved from the address space of one process to that of another
process through cooperative operations on each process.

 The primary goal of the Message Passing Interface is to provide a widely used standard for writing
message passing programs.

 Parallel Virtual Machine (PVM): It is a software tool for parallel networking of computers. It is
designed to allow a network of heterogeneous Unix and/or Windows machines to be used as a single
distributed parallel processor.

 Remote Procedure Call (RPC): The Remote Procedure Call (RPC) is a common model of request
reply protocol. In RPC, the procedure need not exist in the same address space as the calling
procedure. The two processes may be on the same system, or they may be on different systems with
a network connecting them.

 Remote Method Invocation (RMI): RMI (Remote Method Invocation) is a way that a programmer
can write object-oriented programming in which objects on different computers can interact in a
distributed network. It is a set of protocols being developed by Sun's JavaSoft division that enables
Java objects to communicate remotely with other Java objects.

 Remote Procedure Call (RPC): RPC is a powerful technique for constructing distributed, client-
server based applications. In RPC, the procedure need not exist in the same address space as the
calling procedure. The two processes may be on the same system, or they may be on different
systems with a network connecting them. By using RPC, programmers of distributed applications
avoid the details of the interface with the network. RPC makes the client/server model of computing
more powerful and easier to program.

Differences between RMI and RPC

RMI RPC
RMI uses an object oriented paradigm
where the user needs to know the object
and the method of the object he needs to
invoke.

RPC is not object oriented and does not
deal with objects. Rather, it calls specific
subroutines that are already established

With RPC looks like a local call. RPC
handles the complexities involved with
passing the call from the local to the
remote computer.

RMI handles the complexities of passing
along the invocation from the local to the
remote computer. But instead of passing
a procedural call, RMI passes a reference
to the object and the method that is being
called.

The commonalities between RMI and RPC are as follows:
 They both support programming with interfaces.
 They are constructed on top of request-reply protocols.
 They both offer a similar level of transparency.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

 Common Object Request Broker Architecture (CORBA): CORBA describes a messaging
mechanism by which objects distributed over a network can communicate with each other irrespective of the
platform and language used to develop those objects. The data representation is concerned with an external
representation for the structured and primitive types that can be passed as the arguments and results of
remote method invocations in CORBA. It can be used by a variety of programming languages.

1.7 SYNCHRONOUS VS ASYNCHRONOUS EXECUTIONS
The execution of process in distributed systems may be synchronous or asynchronous.

Asynchronous Execution:
A communication among processes is considered asynchronous, when every communicating process can have

a different observation of the order of the messages being exchanged. In an asynchronous execution:
 there is no processor synchrony and there is no bound on the drift rate of processor clocks
 message delays are finite but unbounded
 no upper bound on the time taken by a process

Fig 1.13: Asynchronous execution in message passing system

Synchronous Execution:
A communication among processes is considered synchronous when every process observes the same order of

messages within the system. In the same manner, the execution is considered synchronous, when every individual
process in the system observes the same total order of all the processes which happen within it. In an synchronous
execution:
 processors are synchronized and the clock drift rate between any two processors is bounded
 message delivery times are such that theyoccur in one logical step or round
 upper boundon the time taken by a process to execute a step.

Fig 1.14: Synchronous execution

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

Emulating an asynchronous system by a synchronous system (A → S)
An asynchronous program can be emulated on a synchronous system as a special case of an asynchronous system
– all communication finishes within the same round in which it is initiated.

Emulating a synchronous system by an asynchronous system (S → A)
A synchronous program can be emulated on an asynchronous system using a tool called synchronizer.

Emulation for a fault free system

Fig 1.15: Emulations in a failure free message passing system

 Any class can be emulated by any other
 If system A can be emulated by system B, denoted A/B, and if a problem is not solvable in B, then it is also

not solvable in A.
 If a problem is solvable in A, it is also solvable in B.
 Hence, in a sense, all four classes are equivalent in terms of computability in failure-free systems.

