Rohini College of Engineering and Technology

Rohini College of Engineering and Technology $H(z) = S_0 \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$ $=S_0 \frac{N(z)}{D(z)}$ From figure $H'(z) = \frac{W(z)}{X(z)} = \frac{S_0}{1 + a_z z^{-1} + a_z z^{-2}} = \frac{S_0}{D(z)}$ D(z) $W(z) = \frac{S_0 X(z)}{D(z)} = S_0 S(z) x(Z)$ Where $S(z) = \frac{1}{D(z)}$ we have $w(n) = \frac{S_0}{2\pi} \int S(e^{j\theta}) X(e^{j\theta}) (e^{jn\theta}) d\theta$ w(n) $^{2} = \frac{S_{0}^{2}}{2\pi^{2}} \left| \int S(e^{j\theta}) X(e^{j\theta})(e^{jn\theta}) d\theta \right|^{2}$ Using Schwartz inequality w(n) $^{2} \leq S_{0}^{2} \left[\int_{2\pi} \left| S(e^{j\theta}) \right|^{2} \mathrm{d}\theta \right] \left[\int_{2\pi} \left| X(e^{j\theta}) \right|^{2} \mathrm{d}\theta \right]$ Applying parsevals theorem w(n) $^{2} \leq S_{0}^{2} \sum_{n=1}^{\infty} x^{2}(n) \frac{1}{2\pi} \int_{2\pi} |S(e^{j\theta})|^{2} \mathrm{d}\theta$ if $z = e^{j\theta}$ then $dz = je^{j\theta} d\theta$ which gives $d\theta = \frac{dz}{iz}$ ULAM, KANYAKUMARI By substituting all values w(n) $^{2} \leq S_{0}^{2} \sum_{n=0}^{\infty} x^{2}(n) \frac{1}{2\pi i} \int_{c} |S(z)|^{2} z^{-1} dz$ w(n) $^{2} \leq S_{0}^{2} \sum_{r=0}^{\infty} x^{2}(n) \frac{1}{2\pi i} \int_{c} S(z) S(z^{-1}) z^{-1} dz$ $w^{2}(n) \leq \sum_{n=0}^{\infty} x^{2}(n)$ when OBSERVE OPTIMIZE OUTSPREAD $S_0^2 \frac{1}{2\pi i} \int_c S(z) S(z^{-1}) dz = 1$ Which gives us, $S_0^2 = \frac{1}{\frac{1}{2\pi j} \int_c S(z) S(z^{-1}) z^{-1} dz}$ $=\frac{1}{\frac{1}{2\pi i}\int_{c}\frac{z^{-1}dz}{D(z)D(z^{-1})}}$ $S_0^2 = \frac{1}{I}$ EC8553-DISCRETE TIME SIGNAL PROCESSING Where I=

Rohini College of Engineering and Technolog

$$\frac{1}{2\pi j} \int_{c} \frac{z^{-1} dz}{D(z)D(z^{-1})}$$

Note:

- Because of the process of scaling, the overflow is eliminated. Here so is the scaling factor for the first stage.
 - Scaling factor for the second stage = S₀₁ and it is given by $S_{01}^2 = \frac{1}{S_0^2 I_0}$

Where
$$I_2 = \frac{1}{2\pi j} \oint_c \frac{H_1(Z)H_1(Z^{-1})Z^{-1}}{D_2(Z)D_2(Z^{-1})} dZ$$

For the given transfer function, $H(Z) = \frac{0.25 + 0.7Z^{-1}}{1 - 0.5Z^{-1}}$, find scaling factor so as to avoid *****

overflow in

Consider the recursive filter shown in fig. The input x(n) has a range of values of ±100V, represented by 8 bits. Compute the variance of output due to A/D conversion process. (6)

ology Dahini Calla of Engin d Toob

When College of Engineering and Technols
to input quantization
$$\int \sigma_{n}^{*} = \sigma_{1}^{*} \frac{1}{2\pi} \int_{0}^{\pi} H(z)H(z^{-1})z^{-1}dz \\
= \sigma_{1}^{*} \sum_{n=1}^{\infty} \operatorname{Rest} \left[H(z)H(z^{-1})z^{-1} \right]_{z,n}^{*} \\
= \sigma_{1}^{*} \sum_{n=1}^{\infty} \left[(z = p_{1})H(z)H(z^{-1})z^{-1} \right]_{z,n}^{*} \\
\text{Where } p_{1}, p_{2}, \dots, p_{3} \text{ are poles of } H(z)H(z^{+})z^{-1} dt \text{ lies inside the unit circle in z-plane.} \\
= \sigma_{n}^{*} (z = 0.999)(\frac{0.001}{(z = 0.999)(z = 0.001)} \int_{u_{1}, u_{2}, u_{3}} NEEP \\
= \sigma_{n}^{*} (z = 0.999)(\frac{0.001}{(z = 0.999)(z = 0.001)} \int_{u_{1}, u_{2}, u_{3}} NEEP \\
= \sigma_{n}^{*} (z = 0.999)(\frac{0.001}{(z = 0.999)(z = 0.001)} \int_{u_{1}, u_{2}, u_{3}} NEEP \\
= \sigma_{n}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
\text{b) b+1=16 bits} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1}^{*} (z = 0.002) = 2.544 \times 10^{-7} \\
= \sigma_{1$$

	Rohini College of Engineering and Technology
$(0.2)_{10} = \frac{0.2 \times 2}{0.4}$	
$\rightarrow 0 \downarrow$	
0.4×2	
$\frac{0.1\times2}{0.8}$	
\mapsto 0	
0.8×2	
1.6	
\mapsto 1	
0.6×2	RIA
1.2	S''G
\mapsto 1	4
$\underline{0.2 \times 2}$	14
0.4	
\mapsto 0	
After truncation we get $(0.001)_2 = (0.125)_{10}$	
The system function after coefficient quantization is	
H(z) =	
$\frac{1}{1-0.875z^{-1}} + 0.125z^{-2}$	
Now the pole locations are given by $z_1 = 0.695$	
z ₁ =0.055 z ₂ =0.178	
If we compare the Poles of $H(z)$ and $H(z)$ we can observe that t	he poles of $H(z)$ deviate very much from the
original poles.	
<u>Cascade Iorm</u>	
$H(z) = \frac{1}{1 - 0.5z^{-1}(1 - 0.4z^{-1})}$	
(0.5) = (0.1000)	
$(0.5)_{10} - (0.1000)_2$	
$(0.100)_2 = (0.5)_{10}$	IMAR
After truncation we get	KU
$(0.011)_2 = (0.375)_{10}$	
$(0.4)_{10} = \frac{0.4 \times 2}{0.8}$	
\mapsto 0 \downarrow	
$\frac{0.8\times2}{1.6}$ ORCE	TERREAD
$\rightarrow 0$ $\rightarrow SERVE OPTIMIZE O$	UTSPRE
$\frac{0.0\times 2}{1.2}$	
\mapsto 1 0.2 × 2	
0.4	
\mapsto 1 0.4×2	
$(0.4)_{10} = (0.01100)_2$	
The system function after coefficient quantization is	
$H(z) = \frac{1}{z}$	
$(1-0.5z^{-1})(1-0.375z^{-1})$	
The pole locations are given by	
$z_1=0.5$	

z=0 375	Rohini College of Engineering and Technology
on comparing the poles of the cascade system with original p and other pole is very close to original pole.	boles we can say that one of the poles is same
A LTI system is characterized by the difference equation The input signal $x(n)$ has a range of -5V to +5V, represenvariance of the error signal and variance of the quantization Solution:	y(n)=0.68y(n-1)+0.5x(n). ted by 8-bits. Find the quantization step size, tion noise at the output.
Given	
Range $R=-5V$ to $+5V = 5-(-5) = 10$ Size of binary, $B=8$ bits (including sign bit) GINE/ Quantization step size,	ERING
$q = \frac{R}{2^8} = \frac{10}{2^8} = 0.0390625$	A.
variance of error signal, $\sigma_e^2 = \frac{q^2}{12} = \frac{0.0390625^2}{12} = 1.27116*1$	10-4
The difference equation governing the LTI system is Y (n) =0.68y (n-1) +0.15x (n) On taking z transform of above equation we get $Y(z) = 0.68z^{-1}Y(z) + 0.15X(z)$	The second secon
$Y(z) - 0.68z^{-1}Y(z) = 0.15X(z)$	
$Y(z)[1-0.68z^{-1}] = 0.15X(z)$	
$\frac{Y(z)}{X(z)} = \frac{0.15}{1 - 0.68z^{-1}}$	
$H(z) = \frac{Y(z)}{X(z)} = \frac{0.15}{1 - 0.68z^{-1}}$	
$H(z)H(z^{-1})z^{-1} = \frac{0.15}{1 - 0.68z^{-1}} * \frac{0.15}{1 - 0.68z} * z^{-1}$	
$H(z)H(z^{-1})z^{-1} = \frac{0.225z^{-1}}{\left(1 - \frac{0.68}{z}\right)\left(-0.68\right)\left(z - \frac{1}{0.68}\right)}$	MARI *
$H(z)H(z^{-1})z^{-1} = \frac{-0.0331z^{-1}}{\left(\frac{z-0.68}{z}\right)(z-1.4706)} = \frac{-0.0}{(z-0.68)}$	$\frac{331z^{-1}}{(z-1.4706)}$
Now, poles of H (z) H (z^{-1}) z^{-1} are p_1 =0.68, p_2 =1.4706 Here, p_1 =0.68 is the only pole that lies inside the unit circle is Variance of the input quantization noise at the output.	n z-plane OUTSPREAD

2. Quantisation

Rohini College of Engineering and Technology

- The process of converting a discrete-time continuous amplitude signal into digital signal is called quantization.
- The value of each signal sample is represented by a value selected from a finite set of possible values.
- The difference between the unquantised sample x(n) and the quantized output $x_q(n)$ is called the quantization error or quantization noise.

$$e_q(n) = x_q(n) - x(n)$$

- To eliminate the excess bits either discard them by the process of truncation or discard them by rounding the resulting number by the process of rounding.
- The values allowed in the digital signals are called the quantization levels
- The distance Δ between two successive quantization levels is called the quantization step size or resolution.
- The quality of the output of the A/D converter is measured by the signal-to-quantization noise ratio.
- 3. Coding
- In the coding process, each discrete value $x_q(n)$ is represented by a b-bit binary sequence.

Basic operations in converting a digital signal into an analog signal

- The D/A converter accepts, at its input, electrical signals that corresponds to a binary word, and produces an output voltage or current that is proportional to the value of the binary word.
- The task of D/A converter is to interpolate between samples.
- The sampling theorem specifies the optimum interpolation for a band limited signal.
- The simplest D/A converter is the zero order hold which holds constant value of sample until the next one is received.
- Additional improvement can be obtained by using linear interpolation to connect successive samples with straight line segment.
- Better interpolation can be achieved y using more sophisticated higher order interpolation techniques.
- Suboptimum interpolation techniques result in passing frequencies above the folding frequency. Such frequency components are undesirable and are removed by passing the output of the interpolator through a proper analog filter which is called as post filter or smoothing filter.
- Thus D/A conversion usually involve a suboptimum interpolator followed by a post filter.