#### UNIT V DESIGN OF FOOTINGS

### **Design of wall footing**

#### **Problem**

Design a footing for 250mm thick has masonry wall with supports to carry a design load of 200kn/m at service state. Consider unit weight of soil  $20\text{KN/}m^3$ . Angle of repose =  $30^\circ$ . Allowable bearing capacity  $150\text{KN/}m^2$ ,  $M_{20}$ ,  $Fe_{415}$ .

#### **Given Data:**

$$q_0 = 150KN/m^2$$
 $\gamma = 20 KN/m^3$ 
 $p_u = 250mm$ 
 $p_u = 200 KNm$ 
 $p_u = 30^\circ$ 
 $p_u = 415 N/mm^2$ 

### **Step 2:**

# **Determination of depth of foundation**

h = 
$$\frac{q_0}{\gamma} x [1 - \sin \emptyset / 1 + \sin \emptyset]^2$$
  
=  $\frac{150}{20} x [1 - \sin 30 / 1 + \sin 30]^2$   
=  $0.83 \approx 1 \text{m}$ 

### **Step 3:**

# Find width of footing

$$B = \frac{Load}{S.B.C}$$

$$= \frac{200}{150} = 1.35 \text{ m}$$

## **Step 4:**

#### Find total load

Self weight of footing = 
$$(L \times B \times D) \gamma$$
  
=  $(1 \times 1.35 \times 1) 25$ 

### Rohini College of Engineering & Technology

 $33.75 \cong 34$ 

Total Load = 
$$p_u$$
 + self weight =  $200 + 34$ 

$$= 234 \, KN/m^2$$

#### Step 5:

### **Actual width of footing**

Actual width = 
$$\frac{234}{150}$$
 = 1.56\pm 1.6 m

#### Step 6:

#### Net upward pressure

$$P_{o} = \frac{Load(given)}{Width \times 1(m \ given)}$$

$$= \frac{200}{1.6} = \frac{125KN/m^{2}}{m \ length}$$

#### **Step 7:**

### a) Depth of Basis of Bending Compression

$$M = \frac{P_0}{8} x (B - b) x (B - \frac{b}{4})$$

$$= \frac{125}{8} x (1.6 - 250 x 10^{-3}) x (1.6 - \frac{250 \times 10^{-3}}{4})$$

$$M = 32.43 \text{ KNm}$$
Factored Moment = 1.5 x M
$$= 1.5 x 32.43$$

$$M_u = 48.645 \text{ KNm}$$

$$M_u \lim = \frac{0.36 x_u max}{d} f_{ck} \left[ 1 - \frac{0.42 x_u max}{d} \right] b d^2$$

$$= 0.36 x 0.48 x 20 \left[ 1 - 0.42 x 0.48 \right] b d^2$$

$$= 2.759 b d^2$$

$$M_u \lim = M_u$$

$$2.759 b d^2 = 48.645 x 10^3$$

$$d = 132.78 mm$$

$$D = d + \text{cover}$$

$$= 132.78 + 60$$

# Rohini College of Engineering & Technology

$$=$$
 192.78 mm

$$D = 200 \text{ mm}$$

#### b) Depth on basis of one way shear

Assume, 
$$p_t = 0.3\%$$

$$\tau_{\rm v} = \tau_{\rm c} \times K$$

$$\tau_{\rm c}$$
 ref IS456 Pg No: 73

$$0.25 \to 0.36$$

$$0.50 \to 0.48$$

$$\tau_{\rm c} = 0.38$$

Permissible shear stress, 
$$\tau_{\rm v} = 0.38 \, {\rm K}$$

K ref IS 456 Pg No: 73

$$K = 1.20$$

$$\tau_{\rm v} = 0.38 \, \mathrm{x} \, 1.20$$

$$\tau_{\rm v} = 0.456$$

### c)Critical section lies 'd' distances from face of wall

$$V_u = 1.5 P_o a$$

$$a = \frac{B}{2} - \frac{B}{2}$$

$$=$$
  $\frac{1.35}{2} - \frac{250}{2}$ 

$$a = 675 \text{ mm}$$

$$a = 0.675 \text{ m}$$

$$V_{\rm u} = 1.5 \times P_{\rm o} \times a$$

$$= 1.5 \times 125 \times 0.675 = 126.56 \, N/m^2$$

$$au_{\rm v} = \frac{V_{\rm u}}{bd}$$

$$0.456 \qquad = \qquad \frac{126.56 \times 10^3}{1000 \times d}$$

$$d = 277.54 \text{ mm} \cong 280 \text{ mm}.$$

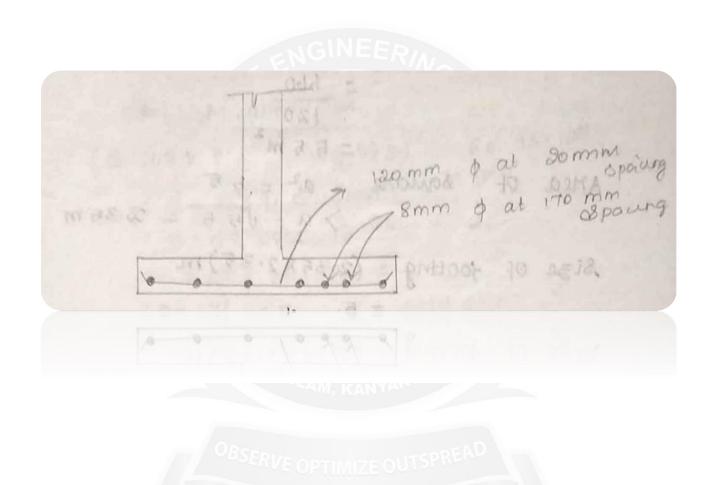
$$D \quad = \quad d + d_c$$

$$=$$
 280 + 60 = 340 mm

# **Design Reinforcement**

$$M_u = 0.87 f_y \text{ Ast d } \left[1 - \frac{\text{fyAst}}{bd f_{ck}}\right]$$

# Rohini College of Engineering & Technology


$$48.65 \times 10^{6} = 0.87 \times 415 \times \text{Ast} \times 270 \left[1 - \frac{415 \text{ Ast}}{1000 \times 270 \times 20}\right]$$

$$\text{Ast} = 519.83$$

Provide 12mm Ø at 200mm C/C.

### **Distribution Reinforcement**

$$= \frac{0.12}{100} \times 1000 \times 250$$
$$= 300 \text{mm}$$

