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2.9. CPU SCHEDULING  

2.9.1 Basic Concepts  

 Almost all programs have some alternating cycle of CPU number crunching and waiting 

for I/O of some kind. (Even a simple fetch from memory takes a long time relative to CPU 

speeds.)  

 In a simple system running a single process, the time spent waiting for I/O is wasted, 

and those CPU cycles are lost forever.   

 A scheduling system allows one process to use the CPU while another is waiting for 

I/O, thereby making full use of otherwise lost CPU cycles.  

 The challenge is to make the overall system as "efficient" and "fair" as possible, subject 

to varying and often dynamic conditions, and where "efficient" and "fair" are somewhat 

subjective terms, often subject to shifting priority policies.  

CPU-I/O Burst Cycle 

• Almost all processes alternate between two states in a continuing cycle, as shown 

in Figure below : 

• A CPU burst of performing calculations, and  

• An I/O burst, waiting for data transfer in or out of the system.  
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CPU Scheduler 

• Whenever the CPU becomes idle, it is the job of the CPU Scheduler ( a.k.a. the short-

term scheduler ) to select another process from the ready queue to run next.  

• The storage structure for the ready queue and the algorithm used to select the next 

process are not necessarily a FIFO queue. There are several alternatives to choose from, as 

well as numerous adjustable parameters for each algorithm, which is the basic subject of this 

entire chapter.  

Preemptive Scheduling 

 CPU scheduling decisions take place under one of four conditions:  

1. When a process switches from the running state to the waiting state, such 

as for an I/O request or invocation of the wait( ) system call.  

2. When a process switches from the running state to the ready state, for 

example in response to an interrupt.  

3. When a process switches from the waiting state to the ready state, say at 

completion of I/O or a return from wait( ).  

4. When a process terminates.  

• For conditions 1 and 4 there is no choice - A new process must be selected.  

• For conditions 2 and 3 there is a choice - To either continue running the current 

process, or select a different one.  

• If scheduling takes place only under conditions 1 and 4, the system is said to be non-

preemptive, or cooperative. Under these conditions, once a process starts running it keeps 

running, until it either voluntarily blocks or until it finishes. Otherwise the system is said to 

be preemptive. 

• Windows used non-preemptive scheduling up to Windows 3.x, and started using pre-

emptive scheduling with Win95. Macs used non-preemptive prior to OSX,  

and pre-emptive since then. Note that pre-emptive scheduling is only possible on hardware 

that supports a timer interrupt.  

Note that pre-emptive scheduling can cause problems when two processes share data, 

because one process may get interrupted in the middle of updating shared data structures. 

Chapter 5 examined this issue in greater detail.  

• Preemption can also be a problem if the kernel is busy implementing a system call ( 

e.g. updating critical kernel data structures ) when the preemption occurs. Most modern 
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UNIX deal with this problem by making the process wait until the system call has either 

completed or blocked before allowing the preemption Unfortunately this solution is 

problematic for real-time systems, as real-time response can no longer be guaranteed.  

• Some critical sections of code protect themselves from con currency problems by 

disabling interrupts before entering the critical section and re-enabling interrupts on 

exiting the section. Needless to say, this should only be done in rare situations, and only 

on very short pieces of code that will finish quickly, ( usually just a few machine 

instructions. )  

 Dispatcher 

 The dispatcher is the module that gives control of the CPU to the process selected by 

the scheduler. This function involves:  

• Switching context.  

• Switching to user mode.  

• Jumping to the proper location in the newly loaded program.  

• The dispatcher needs to be as fast as possible, as it is run on every context switch. The 

time consumed by the dispatcher is known as dispatch latency.  

 

2.9.2 Scheduling Criteria  

 There are several different criteria to consider when trying to select the "best" 

scheduling algorithm for a particular situation and environment, including:  

CPU utilization  

 - Ideally the CPU would be busy 100% of the time, so as to waste 0  

CPU cycles. On a real system CPU usage should range from 40% ( lightly loaded ) to 90% ( 

heavily loaded. )  

Throughput  

 - Number of processes completed per unit time. May range from 10 / second to 1 / 

hour depending on the specific processes.  

Turnaround time  

 - Time required for a particular process to complete, from submission time to 

completion. ( Wall clock time. )  

Waiting time  
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 - How much time processes spend in the ready queue waiting their turn to get on the 

CPU.  

(Load average - The average number of processes sitting in the ready queue waiting their turn 

to get into the CPU. Reported in 1-minute, 5-minute, and 15-minute averages by "uptime" 

and "who". )  

Response time  

 - The time taken in an interactive program from the issuance of a command to the 

commence of a response to that command.  

 In general one wants to optimize the average value of a criteria (Maximize CPU 

utilization and throughput, and minimize all the others. ) However sometimes one wants to 

do something different, such as to minimize the maximum response time.  

 Sometimes it is most desirable to minimize the variance of a criteria than the actual 

value.  

I.e. users are more accepting of a consistent predictable system than an inconsistent one,  

even if it is a little bit slower.  

 

2.9.3 Scheduling Algorithms  

 The following subsections will explain several common scheduling strategies, looking 

at only a single CPU burst each for a small number of processes. Obviously real systems have 

to deal with a lot more simultaneous processes executing their CPU-I/O burst cycles.  

1. First-Come First-Serve Scheduling, FCFS 

• FCFS is very simple - Just a FIFO queue, like customers waiting in line at the 

bank or the post office or at a copying machine.  

• Unfortunately, however, FCFS can yield some very long average wait times, 

particularly if the first process to get there takes a long time. For example, consider the 

following three processes: 

 

• In the Gantt chart below, process P1 arrives first. The average waiting time for 

the three processes is ( 0 + 24 + 27 ) / 3 = 17.0 ms. 

Process  Burst Time  

P1  24  

P2  3  

P3  3  
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P1 P2 P3 

0         24          27      30  

In the Gantt chart below, the same three processes have an average wait time of ( 0 + 3 

+ 6 ) / 3 = 3.0 ms. The total run time for the three bursts is the same, but in the second 

case two of the three finish much quicker, and the other process is only delayed by a 

short amount.  

 

 

 0           3            6                                                                                                             30  

• FCFS can also block the system in a busy dynamic system in another way, 

known as the convoy effect. When one CPU intensive process blocks the CPU, a number of 

I/O intensive processes can get backed up behind it, leaving the I/O devices idle. When the 

CPU hog finally relinquishes the CPU, then the I/O processes pass through the CPU quickly, 

leaving the CPU idle while everyone queues up for I/O, and then the cycle repeats itself when 

the CPU intensive process gets back to the ready queue.  

• Calculate Waiting time, average waiting time, turn around time, average turn 

around time  

 

2. Shortest-Job-First Scheduling, SJF  

• The idea behind the SJF algorithm is to pick the quickest fastest little job that 

needs to be done, get it out of the way first, and then pick the next smallest fastest job to do 

next.  

( Technically this algorithm picks a process based on the next shortest CPU burst, not the 

overall process time. )  

• For example, the Gantt chart below is based upon the following CPU burst 

times, ( and the assumption that all jobs arrive at the same time. )  

 

   

Process  Burst Time  

P1  6  

P2  8  

P3  7  

P4  3  
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P4 P1 P3 P2 

            0               3                                   9                                         16                                       24 

• In the case above the average wait time is (0 + 3 + 9 + 16 ) / 4 = 7.0 ms, ( as opposed 

to 10.25 ms for FCFS for the same processes. )  

• SJF can be proven to be the fastest scheduling algorithm, but it suffers from one 

important problem: How do you know how long the next CPU burst is going to be?  

• For long-term batch jobs this can be done based upon the limits that users set for their 

jobs when they submit them, which encourages them to set low limits, but risks their having 

to re-submit the job if they set the limit too low. However that does not work for short-term 

CPU scheduling on an interactive system.  

 SJF can be either preemptive or non-preemptive. Preemption occurs when a new 

process arrives in the ready queue that has a predicted burst time shorter than the time 

remaining in the process whose burst is currently on the CPU. Preemptive SJF is sometimes 

referred to as  

 

3. Shortest remaining time first scheduling. 

• For example, the following Gantt chart is based upon the following data:  

 

 

P1 P2 P4 P1 P3 

         0     1      5               10                17                        26 

The average wait time in this case is ( ( 5 - 3 ) + ( 10 - 1 ) + ( 17 - 2 ) ) / 4 = 26 /  

4 = 6.5 ms.( As opposed to 7.75 ms for non-preemptive SJF or 8.75 for FCFS. )  

 Calculate Waiting time, average waiting time, turn around time, average turn around 

time  

Process  Arrival Time  Burst Time  

P1  0  8  

P2  1  4  

P3  2  9  

p4  3  5  
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3. Priority Scheduling 

• Priority scheduling is a more general case of SJF, in which each job is assigned a priority 

and the job with the highest priority gets scheduled first. ( SJF uses the inverse of the next 

expected burst time as its priority - The smaller the expected burst, the higher the priority. )  

• Note that in practice, priorities are implemented using integers within a fixed range, 

but there is no agreed-upon convention as to whether "high" priorities use large numbers or 

small numbers. This book uses low number for high priorities, with 0 being the highest 

possible priority.  

• For example, the following Gantt chart is based upon these process burst times and 

priorities, and yields an average waiting time of 8.2 ms:  

 

 

 

 

0    1                     6                                              16      18  19 

• Priorities can be assigned either internally or externally. Internal priorities are assigned 

by the OS using criteria such as average burst time, ratio of CPU to I/O activity, system 

resource use, and other factors available to the kernel. External priorities are assigned by 

users, based on the importance of the job, fees paid, politics, etc.  

Priority scheduling can be either preemptive or non-preemptive.  

• Priority scheduling can suffer from a major problem known as indefinite blocking, or 

starvation, in which a low-priority task can wait forever because there are always some other 

jobs around that have higher priority.  

• If this problem is allowed to occur, then processes will either run eventually when the 

system load lightens (at say 2:00 a.m. ), or will eventually get lost when the system is shut 

down or crashes. (There are rumors of jobs that have been stuck for years. )  

P1 P2 P1 P3 
P 

4 

Process  Burst Time  Priority  

P1  10  3  

P2  1  1  

P3  2  4  

P4  1  5  

P5  5  2  
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• One common solution to this problem is aging, in which priorities of jobs increase the 

longer they wait. Under this scheme a low-priority job will eventually get its priority raised 

high enough that it gets run.  

• Calculate Waiting time, average waiting time, turn around time, average turn around 

time  

 

4. Round Robin Scheduling 

• Round robin scheduling is similar to FCFS scheduling, except that CPU bursts are 

assigned with limits called time quantum.  

• When a process is given the CPU, a timer is set for whatever value has been set for a 

time quantum.  

• If the process finishes its burst before the time quantum timer expires, then it is 

swapped out of the CPU just like the normal FCFS algorithm.  

• If the timer goes off first, then the process is swapped out of the CPU and moved to 

the back end of the ready queue.  

• The ready queue is maintained as a circular queue, so when all processes have had a 

turn, then the scheduler gives the first process another turn, and so on.  

• RR scheduling can give the effect of all processors sharing the CPU equally, although 

the average wait time can be longer than with other scheduling algorithms. In the following 

example the average wait time is 5.66 ms. 

 

 

P1 P2 P3 P1 P1 P1 P1 P1 

           0                   4               7             10                    14                  18                  22                 26 30 

• The performance of RR is sensitive to the time quantum selected. If the quantum is 

large enough, then RR reduces to the FCFS algorithm; If it is very small, then each process 

gets 1/nth of the processor time and share the CPU equally.  

Process  Burst Time  

P1  24  

P2  3  

P3  3  
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• BUT, a real system invokes overhead for every context switch, and the smaller the time 

quantum the more context switches there are. Most modern systems use time quantum 

between 10 and 100 milliseconds, and context switch times on the order of 10 microseconds, 

so the overhead is small relative to the time quantum.  

 

           The way in which a smaller time quantum increases context switches. 

• Turn around time also varies with quantum time, in a non-apparent manner. Consider, for 

example the processes shown in Figure 6.5:  

 

The way in which turnaround time varies with the time quantum. 

 In general, turnaround time is minimized if most processes finish their next cpu burst 

within one time quantum. For example, with three processes of 10 ms bursts each, the 

average turnaround time for 1 ms quantum is 29, and for 10 ms quantum it reduces to 20. 

However, if it is made too large, then RR just degenerates to FCFS. A rule of thumb is that 80% 

of CPU bursts should be smaller than the time quantum.  

 Calculate Waiting time, average waiting time, turn around time, average turn around 

time  
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5. Multilevel Queue Scheduling 

• When processes can be readily categorized, then multiple separate queues can be 

established, each implementing whatever scheduling algorithm is most appropriate for that 

type of job, and/or with different parametric adjustments.  

• Scheduling must also be done between queues,  that is scheduling one queue to get 

time relative to other queues. Two common options are strict priority (no job in a lower 

priority queue runs until all higher priority queues are empty) and round-robin ( each queue 

gets a time slice in turn, possibly of different sizes. )  

• Note that under this algorithm jobs cannot switch from queue to queue – Once they 

are assigned a queue,  that is their queue until they finish.  

 

 

6. Multilevel Feedback-Queue Scheduling 

 Multilevel feedback queue scheduling is similar to the ordinary multilevel queue 

scheduling described above, except jobs may be moved from one queue to another for a 

variety of reasons:  

 If the characteristics of a job change between CPU-intensive and I/O intensive, then it 

may be appropriate to switch a job from one queue to another.  

 Aging can also be incorporated, so that a job that has waited for a long time can get 

bumped up into a higher priority queue for a while.  
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 Multilevel feedback queue scheduling is the most flexible, because it can be tuned for 

any situation. But it is also the most complex to implement because of all the adjustable 

parameters. Some of the parameters which define one of these systems include:  

1. The number of queues.  

2. The scheduling algorithm for each queue.  

3. The methods used to upgrade or demote processes from one 

queue to another. (Which may be different. )  

4. The method used to determine which queue a process enters 

initially.  

     

 

 


