4.2 SPECIAL FUNCTION REGISTERS (SFRs)

8051 MICROCONTROLLER SPECIAL FUNCTION REGISTERS

SFR registers exist in the address range of 80h through FFh. Each SFR has an address (80h through FFh) and a name. The following Table 4.2.1 provides a the 8051's SFRs, their names and their address. Although the address range of 80H through FFH offers 128 possible addresses, there are only 21 SFRs in a standard 8051.

Symbol	Name	Address
ACC*	Accumulator	0E0H
B*	B register	0F0H
PSW*	Program status word	0D0H
SP	Stack pointer	81H
DPTR	Data pointer 2 bytes	
DPL	Low byte	82H
DPH	High byte	83H
P0*	Port 0	80H
P1*	Port 1	90H
P2*	Port 2	0A0H
P3*	Port 3	0B0H
IP*	Interrupt priority control	0B8H
IE*	Interrupt enable control	0A8H
TMOD	Timer/counter mode control	89H
TCON*	Timer/counter control	88H
T2CON*	Timer/counter 2 control	0C8H
T2MOD	Timer/counter mode control	0C9H
TH0	Timer/counter 0 high byte	8CH
TL0	Timer/counter 0 low byte	8AH
TH1	Timer/counter 1 high byte	8DH
TL1	Timer/counter 1 low byte	8BH
TH2	Timer/counter 2 high byte	0CDH
TL2	Timer/counter 2 low byte	0CCH
RCAP2H	T/C 2 capture register high byte	0CBH
RCAP2L	T/C 2 capture register low byte	0CAH
SCON*	Serial control	98H
SBUF	Serial data buffer	99H
PCON	Power control	87H

^{*} Bit-addressable

Table 4.2.1 8051 Special Function Registers (SFRs) Addresses

[Source: "The 8051Microcontroller and Embedded Systems: Using Assembly and C" by Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay] The 21 Special Function Registers of 8051 Microcontroller are categorized in to seven groups. They are:

- Math or CPU Registers: A and B
- Status Register: PSW (Program Status Word)
- Pointer Registers: DPTR (Data Pointer DPL, DPH) and SP (Stack Pointer)
- *I/O Port Latches*: P0 (Port 0), P1 (Port 1), P2 (Port 2) and P3 (Port3)
- Peripheral Control Registers: PCON, SCON, TCON, TMOD, IE and IP
- Peripheral Data Registers: TL0, TH0, TL1, TH1 and SBUF

CPU OR MATH REGISTERS

A OR ACCUMULATOR (ACC)

The Accumulator or Register A is the most important and most used 8051 Microcontroller SFRs. The Register A is located at the address E0H in the SFR memory space. The Accumulator is used to hold the data for almost all the ALU Operations.

B (REGISTER B)

The B Register is used along with the ACC in Multiplication and Division operations. These two operations are performed on data that are stored only in Registers A and B. During Multiplication Operation, one of the operand (multiplier or multiplicand) is stored in B Register and also the higher byte of the result.

In case of Division Operation, the B Register holds the divisor and also the remainder of the result. It can also be used as a General Purpose Register for normal operations and is often used as an Auxiliary Register by Programmers to store temporary results. Register B is located at the address F0H of the SFR Address Space.

PROGRAM STATUS WORD (PSW)

The PSW or Program Status Word Register is also called as Flag Register and is one of the important SFRs. The PSW Register consists of Flag Bits, which help the programmer in checking the condition of the result and also make decisions

POINTER REGISTERS

DATA POINTER (DPTR - DPL AND DPH)

The Data Pointer is a 16-bit Register and is physically the combination of DPL (Data Pointer Low) and DPH (Data Pointer High) SFRs. The Data Pointer can be used as a single 16-bit register (as DPTR) or two 8-bit registers (as DPL and DPH).

DPTR doesn't have a physical Memory Address but the DPL (Lower Byte of DPTR) and DPH (Higher Byte of DPTR) have separate addresses in the SFR Memory Space. DPL = 82H and DPH = 83H. The DPTR Register is used by the programmer addressing external memory (Program - ROM or Data - RAM).

SP or **Stack Pointer** points out to the top of the Stack and it indicates the next data to be accessed. Stack Pointer can be accessed using PUSH, POP, and CALL and RET Instructions. The Stack Pointer is an 8- bit register and upon reset, the Stack Pointer is initialized with 07H.

I/O Port Registers (P0, P1, P2 and P3)

The 8051 Microcontroller four Ports which can be used as Input and/or Output. These four ports are P0, P1, P2 and P3. Each Port has a corresponding register with same names (the Port Registers are also P0, P1, P2 and P3. The addresses of the Port Registers are as follows: P0 - 80H, P1 - 90H, P2 - A0H and P2 -B0H.

PCON (Power Control)

The PCON or Power Control register, as the name suggests is used to control the 8051 Microcontroller's Power Modes and is located at 87H of the SFR Memory Space. Using two bits in the PCON Register, the microcontroller can be set to Idle Mode or Power down Mode.

SCON (Serial Control)

The Serial Control or SCON SFR is used to control the 8051 Microcontroller's Serial Port. It is located as an address of 98H. Using SCON, we can control the Operation Modes of the Serial Port, Baud Rate of the Serial Port and Send or Receive Data using Serial Port.

Byte address			Е	Bit ad	ldres	s					
FF]		
F0	F7	F6	F5	F4	F3	F2	F1	F0	В		
BO	E7	E6	E 5	E4	E3	E2	E1	E0	ACC		
DO	D7	D6	D5	D4	D3	D2	D1	D0	PSW		
B8				ВC	ВВ	BA	В9	В8	IP		
В0	В7	В6	В5	B4	ВЗ	B2	В1	во	Р3		
A8	AF			AC	AB	AA	Α9	Α8	IE		
A0	Α7	A 6	Α5	Α4	A3	A2	A1	A0	P2		
99		not bit-addressable									
98	9F	9E	9D	9C	9B	9A	99	98	SCON		
90	97	96	95	94	93	92	91	90	P1		
8D		TH1									
8C			not l	bit-ac	ldres	sable	е		THO		
8B		not bit-addressable									
8A		not bit-addressable									
89	Г	not bit-addressable									
88	8F	8E	8D	8C	8B	8A	89	88	TCON		
87			not l	bit-ac	ddres	sabl	е		PCON		
83		not bit-addressable									
82	\vdash	not bit-addressable									
81		DPL SP									
80	87	86	85	84	83	82	81	80	P0		
Special Function Registers											

Figure 4.2.1 8051 SFR RAM Address (Byte and Bit)

[Source: "The 8051Microcontroller and Embedded Systems: Using Assembly and C" by Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay]

TCON (Timer Control)

Timer Control or TCON Register is used to start or stop the Timers of 8051 Microcontroller. It also contains bits to indicate if the Timers has overflowed. The TCON SFR also consists of Interrupt related bits.

TMOD (Timer Mode)

The TMOD or Timer Mode register or SFR is used to set the Operating Modes of the Timers T0 and T1. The lower four bits are used to configure Timer0 and the higher four bits are used to configure Timer1.

IE (Interrupt Enable)

The IE or Interrupt Enable Register is used to enable or disable individual interrupts. If a bit is SET, the corresponding interrupt is enabled and if the bit is cleared, the interrupt is disabled. The Bit7 of the IE register i.e. EA bit is used to enable or disable all the interrupts

IP (Interrupt Priority)

The IP or Interrupt Priority Register is used to set the priority of the interrupt as High or Low. If a bit is CLEARED, the corresponding interrupt is assigned low priority and if the bit is SET, the interrupt is assigned high priority.