SIMPLIFIED DATA ENCRYPTION STANDARD (S-DES)

Simplified DES, developed by Professor Edward Schaefer of Santa Clara University, is an educational rather than a secure encryption algorithm. It has similar properties and structure to DES with much smaller parameters.

OVERVIEW

- The S-DES encryption algorithm takes an 8 -bit block of plaintext (example: 10111101) and a 10-bit key as input and produces an 8-bit block of ciphertext as output.
- The S-DES decryption algorithm takes an 8 -bit block of ciphertext and the same 10 -bit key used to produce that ciphertext as input and produces the original 8-bit block of plaintext.
- The S-DES encryption algorithm takes an 8-bit block of plaintext (example: 10111101) and a 10-bit key as input and produces an 8-bit block of ciphertext as output. The S-DES decryption algorithm takes an 8-bit block of ciphertext and the same 10-bit key used to produce that ciphertext as input and produces the original 8-bit block of plaintext.

Reference :William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006

- The encryption algorithm involves five functions: an initial permutation (IP); a complex function labeled f_{K}, which involves both permutation and substitution operations and depends on a key input; a simple permutation function that switches (SW) the two halves of the data; the function f_{K} again; and finally a permutation function that is the inverse of the initial permutation $\left(\mathrm{IP}^{-1}\right)$.
- The use of multiple stages of permutation and substitution results in a more complex algorithm, which increases the difficulty of cryptanalysis.
- The function f_{K} takes as input not only the data passing through the encryption algorithm, but also an 8-bit key. The algorithm could have been designed to work with a 16-bit key, consisting of two 8 -bit subkeys, one used for each occurrence of f_{K}. Alternatively, a single 8-bit key could have been used, with the same key used twice in the algorithm.
- A compromise is to use a 10 -bit key from which two 8 -bit subkeys are generated. In this case, the key is first subjected to a permutation (P10). Then a shift operation is
performed. The output of the shift operation then passes through a permutation function that produces an 8-bit output (P8) for the first subkey $\left(\mathrm{K}_{1}\right)$. The output of the shift operation also feeds into another shift and another instance of P8 to produce the second subkey $\left(K_{2}\right)$.

Figure 3.3 Simplified DES Scheme Encryption Detail.

Reference :William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006

- We can concisely express the encryption algorithm as a composition1 of functions:
- IP-1 $\circ \mathrm{fK} 2 \circ \mathrm{SW} \circ \mathrm{fK} 1 \circ \mathrm{IP}$
- which can also be written as:
- \quad ciphertext $=\operatorname{IP}-1($ fK2 $($ SW (fK1 (IP(plaintext) $))))$
- where $\mathrm{K} 1=\mathrm{P} 8(\operatorname{Shift}(\mathrm{P} 10($ key $)))$
- $\quad \mathrm{K} 2=\mathrm{P} 8(\operatorname{Shift}(\operatorname{Shift}(\mathrm{P} 10($ key $))))$
- Decryption is essentially the reverse of encryption:
- plaintext $=\operatorname{IP}-1($ fK1 $($ SW $(f K 2(\operatorname{IP}($ ciphertext $)))))$

KEY GENERATION

- S-DES depends on the use of a 10-bit key shared between sender and receiver.
- From this key, two 8-bit subkeys are produced for use in particular stages of the encryption and decryption algorithm

Figure: key generation for S-DES

Reference :William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006

- First, permute the key in the following fashion. Let the 10 -bit key be designated as $(\mathrm{k} 1$, $k 2, k 3, k 4, k 5, k 6, k 7, k 8, k 9, k 10)$. Then the permutation P10 is defined as:
- P10(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10) = (k3, k5, k2, k7, k4, k10, k1, k9, k8, k6)
- P10 can be concisely defined by the display:

P 10									
3	5	2	7	4	10	1	9	8	6

- This table is read from left to right; each position in the table gives the identity of the input bit that produces the output bit in that position.
- So the first output bit is bit 3 of the input; the second output bit is bit 5 of the input, and so on. For example, the key (1010000010) is permuted to (1000001100).
- Next, perform a circular left shift (LS-1), or rotation, separately on the first five bits and the second five bits. In our example, the result is (00001 11000). Next we apply P8, which picks out and permutes 8 of the 10 bits according to the following rule:

P8								
6	3	7	4	8	5	10	9	

- The result is subkey 1 (K1).
- In our example, this yields (10100100) We then go back to the pair of 5-bit strings produced by the two LS-1 functions and perform a circular left shift of 2 bit positions on each string. In our example, the value (00001 11000) becomes (00100 00011). Finally, P8 is applied again to produce K2. In our example, the result is (01000011).

S-DES ENCRYPTION

- encryption involves the sequential application of five functions.
- Initial and Final Permutations
- The input to the algorithm is an 8-bit block of plaintext, which we first permute using the IP function:
- IP 26314857
- This retains all 8 bits of the plaintext but mixes them up.
- At the end of the algorithm, the inverse permutation is used:
- IP-141357286
- It is easy to show by example that the second permutation is indeed the reverse of the first; that is, $\operatorname{IP}-1(\operatorname{IP}(X))=X$.

The Function fK

- The most complex component of S-DES is the function fK, which consists of a combination of permutation and substitution functions.
- The functions can be expressed as follows.
- Let L and R be the leftmost 4 bits and rightmost 4 bits of the 8 -bit input to fK , and let F be a mapping (not necessarily one to one) from 4-bit strings to 4-bit strings.
- Then we let
- $\quad \mathrm{f} K(\mathrm{~L}, \mathrm{R})=(\mathrm{L}!\mathrm{F}(\mathrm{R}, \mathrm{SK}), \mathrm{R})$
- where SK is a subkey and ! is the bit-by-bit exclusive-OR function.
- For example, suppose the output of the IP stage is (10111101) and $\mathrm{F}(1101, \mathrm{SK})=(1110)$ for some key SK.
- \quad Then $\mathrm{fK}(10111101)=(01011101)$ because $(1011)!(1110)=(0101)$.
- We now describe the mapping F. The input is a 4-bit number (n1n2n3n4).
- The first operation is an expansion/permutation operation:

E / P							
4	1	2	3	2	3	4	1

- For what follows, it is clearer to depict the result in this fashion:

$$
\begin{array}{l|ll|l}
n_{4} & n_{1} & n_{2} & n_{3} \\
n_{2} & n_{3} & n_{4} & n_{1}
\end{array}
$$

- The 8 -bit subkey $\mathrm{K} 1=(\mathrm{k} 11, \mathrm{k} 12, \mathrm{k} 13, \mathrm{k} 14, \mathrm{k} 15, \mathrm{k} 16, \mathrm{k} 17, \mathrm{k} 18)$ is added to this value using exclusive OR

$$
\begin{array}{l|ll|l}
n_{4} \oplus k_{11} & n_{1} \oplus k_{12} & n_{2} \oplus k_{13} & n_{3} \oplus k_{14} \\
n_{2} \oplus k_{15} & n_{3} \oplus k_{16} & n_{4} \oplus k_{17} & n_{1} \oplus k_{18}
\end{array}
$$

- Let us rename these 8 bits:

$$
\begin{array}{l|ll|l}
p_{0,0} & p_{0,1} & p_{0,2} & p_{0,3} \\
p_{1,0} & p_{1,1} & p_{1,2} & p_{1,3}
\end{array}
$$

- The first 4 bits (first row of the preceding matrix) are fed into the S-box S0 to produce a 2 - bit output, and the remaining 4 bits (second row) are fed into S1 to produce another 2bit output. These two boxes are defined as follows:

$$
S 0=\begin{gathered}
\\
0 \\
1 \\
2 \\
3
\end{gathered} \begin{array}{cccc}
0 & 1 & 2 & 3
\end{array}\left[\begin{array}{llll}
1 & 0 & 3 & 2 \\
3 & 2 & 1 & 0 \\
0 & 2 & 1 & 3 \\
3 & 1 & 3 & 2
\end{array}\right] \quad S 1=\begin{array}{cccc}
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3 \\
2 & 0 & 1 & 3 \\
3 & 0 & 1 & 0 \\
2 & 1 & 0 & 3
\end{array}\right]
$$

- The S-boxes operate as follows.
- The first and fourth input bits are treated as a 2-bit number that specify a row of the Sbox, and the second and third input bits specify a column of the Sbox. The entry in that row and column, in base 2 , is the 2 -bit output. For example, if $(p 0,0 p 0,3)=(00)$ and $(\mathrm{p} 0,1 \mathrm{p} 0,2)=(10)$, then the output is from row 0 , column 2 of S 0 , which is 3 , or (11) in binary. Similarly, ($\mathrm{p} 1,0 \mathrm{p} 1,3$) and ($\mathrm{p} 1,1 \mathrm{p} 1,2$) are used to index into a row and column of S1 to produce an additional 2 bits.
- Next, the 4 bits produced by S0 and S1 undergo a further permutation as follows

P 4			
2	4	3	1

- The output of P4 is the output of the function F. The Switch Function The function fK only alters the leftmost 4 bits of the input. The switch function (SW) interchanges the left and right 4 bits so that the second instance of fK operates on a different 4 bits. In this second instance, the $\mathrm{E} / \mathrm{P}, \mathrm{S} 0, \mathrm{~S} 1$, and P 4 functions are the same. The key input is K 2.

