Eigen values and Eigen vector

1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator given given by T(a,b) = (-2a + 3b, -10a + 9b). Let β be an ordered basis of \mathbb{R}^2 with $A = [T]_B$. (i) Find the matrix A (ii) The eigen values and eigen vectors of T.

Solution

Given, T(a, b) = (-2a + 3b, -10a + 9b). Since β is the standard basis of R^2

$$A = [T]_B = \begin{bmatrix} -2 & 3\\ -10 & 9 \end{bmatrix}$$

To find the Eigen values:

The characteristic equation is $|A - \lambda I| = 0$

 $\lambda^2 - S_1 \lambda + S_2 = 0$

 S_1 =Sum of the leading diagonal elements

= -2 + 9 = 7 $S_2 = |A| = -18 + 30 = 12$ $\lambda^2 - 7\lambda + 12 = 0$ $\lambda = 3, \lambda = 4$

 $\lambda = 3.4$ are the Eigen values of A

To find Eigen vectors:

Solve the equation
$$(A - \lambda I)X = 0$$
 we
get $\begin{pmatrix} -2 - \lambda & 3 \\ -10 & 9 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \dots \dots (a)$

Case 1: When $\lambda = 3$, from (*a*) we get

$$\begin{pmatrix} -5 & 3 \\ -10 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

$$-5x_1 + 3x_2 = 0$$

$$-10x_1 + 6x_2 = 0$$

Since the two equations are same, consider

$$-5x_1 + 3x_2 = 0$$

$$-5x_1 = -3x_2$$

$$\frac{x_1}{3} = \frac{x_2}{5}$$

$$x_1 = 3, x_2 = 5$$

Hence the Eigen vector corresponding to $\lambda = 3$ is $E_{\lambda_1} = \begin{pmatrix} 3 \\ -10 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$

$$-6x_1 + 3x_2 = 0$$

$$-10x_1 + 5x_2 = 0$$

Since the two equations are same, consider

$$-6x_1 + 3x_2 = 0$$

$$-6x_1 = -3x_2$$

$$\frac{x_1}{3} = \frac{x_2}{6}$$

 $\frac{x_1}{1} = \frac{x_2}{2}$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$x_1 = 1, x_2 = 2$$

Hence the Eigen vector corresponding to $\lambda = 4$ is $E_{\lambda_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

2. Let T: P₂(R) → P₂(R) be the linear operator defined by T(f(x)) = f(x) + (x + 1)f'(x). Let β = {1, x, x²} be an ordered basis of P₂(R) with A = [T]_β. Find (i) The matrix A (ii)The eigen values and eigen vectors of T. Solution

Given, $T: P_2(R) \rightarrow P_2(R)$ be the linear operator defined by $T(f(x)) = f(x) + (x + 1)f'(x) \dots (1)$ Let $\beta = \{1, x, x^2\}$ be an ordered basis of $P_2(R)$ To find $A = [T]_{\beta}$

Let,
$$(f(x)) = 1$$
. Then $f'(x) = 0$
(1) $\Rightarrow T(1) = 1 + (x + 1) \cdot 0 = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^2$

The first column of $[T]_{\beta} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ Let, (f(x)) = x. Then f'(x) = 1 $(1) \Rightarrow T(x) = x + (x + 1)$. $1 = 1 + 2x = 1.1 + 2.x + 0.x^2$ The second column of $[T]_{\beta} = \begin{bmatrix} 1\\2\\0 \end{bmatrix}$

Let,
$$(f(x)) = x^2$$
. Then $f'(x) = 2x$
 $(1) \Rightarrow T(x^2) = x^2 + (x + 1) \cdot 2x = 2x + 3x^2$
 $= 0.1 + 2 \cdot x + 3 \cdot x^2$
The third column of $[T]_{\beta} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$
 $A = [T]_{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$
Since A is an upper triangular matrix, the eigen values are
 $\lambda = 1,2,3$
To find Eigen vectors:
Solve the equation $(A - \lambda I)X = 0$

(f(...))

Solve the equation
$$(A - \lambda I)X = 0$$

 $\begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & 0 & 3 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \dots (a)$
Case 1: When $\lambda = 1$, from (a) we get
 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$
 $0x_1 + x_2 + 0x_3 = 0 \dots (1)$
 $0x_1 + x_2 + 2x_3 = 0 \dots (2)$
 $0x_1 + 0x_2 + 2x_3 = 0 \dots (3)$

Solving the two distinct equations (1) and (2) by the rule of cross multiplication, we get

$$\Rightarrow \frac{x_1}{2-0} = \frac{x_2}{0-0} = \frac{x_3}{0-0}$$
$$\Rightarrow \frac{x_1}{2} = \frac{x_2}{0} = \frac{x_3}{0}$$

$$\Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{0}$$

$$x_1 = 1, x_2 = 0, x_3 = 0$$

Hence the Eigen vector corresponding to $\lambda = 1$ is $E_{\lambda_1} =$

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

Case 2: When $\lambda = 2$, from (a) we get
$$\begin{pmatrix} -1 & 1 & 0\\0 & 0 & 2\\0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = 0$$

 $-x_1 + x_2 + 0x_3 = 0 \dots (4)$
 $0x_1 + 0x_2 + 2x_3 = 0 \dots (5)$
 $0x_1 + 0x_2 + 1x_3 = 0 \dots (6)$

Solving the two distinct equations (4) and (5) by the rule of cross multiplication, we get

$$\Rightarrow \frac{x_1}{2-0} = \frac{x_2}{0+2} = \frac{x_3}{0-0}$$
$$\Rightarrow \frac{x_1}{2} = \frac{x_2}{2} = \frac{x_3}{0}$$
$$\Rightarrow \frac{x_1}{1} = \frac{x_2}{1} = \frac{x_3}{0}$$

 $x_1 = 1, x_2 = 1, x_3 = 0$

Hence the Eigen vector corresponding to $\lambda = 2$ is $E_{\lambda_2} =$

 $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ Case 3: When $\lambda = 3$, from (a) we get

$$\begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

-2x₁ + x₂ + 0x₃ = 0 (7)
0x₁ - x₂ + 2x₃ = 0 (8)
0x₁ + 0x₂ + 0x₃ = 0 (9)

Solving the two distinct equations (7) and (8) by the rule of cross multiplication, we get

$$\Rightarrow \frac{x_1}{2 - 0} = \frac{x_2}{0 + 4} = \frac{x_3}{2 - 0}$$
$$\Rightarrow \frac{x_1}{2} = \frac{x_2}{4} = \frac{x_3}{2}$$
$$\Rightarrow \frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{1}$$
$$x_1 = 1, x_2 = 2, x_3 = 1$$

Hence the Eigen vector corresponding to $\lambda = 3$ is $E_{\lambda_3} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$