
Finite Word length Effects:

 In the design of FIR Filters, The filter coefficients are determined by the system transfer functions. These

filter co-efficient are quantized/truncated while implementing DSP System because of finite length registers.

 Only Finite numbers of bits are used to perform arithmetic operations. Typical word length is 16 bits,

24 bits, 32 bits etc.

 This finite word length introduces an error which can affect the performance of the DSP system.

 The main errors are

1. Input quantization error

2. Co-efficient quantization error

3. Overflow & round off error (Product Quantization error)

 The effect of error introduced by a signal process depend upon number of factors including the

1. Type of arithmetic

2. Quality of input signal

3. Type of algorithm implemented

1. Input quantization error

 The conversion of continuous-time input signal into digital value produces an error which is known as

input quantization error.

 This error arises due to the representation of the input signal by a fixed number of digits in A/D

conversion process.

2. Co-efficient quantization error

 The filter coefficients are compared to infinite precision. If they are quantized the frequency response of

the resulting filter may differ from the desired frequency response.

i.e poles of the desired filter may change leading to instability.

3. Product Quantization error

 It arises at the output of the multiplier

 When a ‘b’ bit data is multiplied with another ‘b’ bit coefficient the product (‘2b’ bits) should be stored

in ‘b’ bits register. The multiplier Output must be rounded or truncated to ‘b’ bits. This known as

overflow and round off error.

Types of number representation:

There are two common forms that are used to represent the numbers in a digital or any other digital hardware.

1. Fixed point representation

2. Floating point representation

* Explain the various formulas of the fixed point representation of binary numbers.

1. Fixed point representation

 In the fixed point arithmetic, the position of the binary point is fixed. The bit to the right represents the

fractional part of the number and to those to the left represents the integer part.

 For example, the binary number 01.1100 has the value 1.75 in decimal.

(0*21) + (1*20) + (1*2-1) + (1*2-2) + (0*2-3) = 1.75

In general, we can represent the fixed point number ‘N’ to any desired accuracy by the series

.

FIXED POINT AND FLOATING POINT REPRESENTATION

anu sree
Typewritten text
Rohini College of Engineering and Technology

anu sree
Typewritten text
EC8553-DISCRETE TIME SIGNAL PROCESSING

2n

ni

i

i

i

rCN

Where, r is called as radix.

 If r=10, the representation is known as decimal representation having numbers from 0 to 9. In this

representation the number

285.30

21

3

10
i

i

iC

= (3*101)+ (0*100)+ (2*10-1)+(8*10-2)+(5*10-3)
 If r=2, the representation is known as binary representation with two numbers 0 to 1.

 For example, the binary number

110.010 = (1*22) + (1*21) + (0*20) + (0*2-1) + (1*2-2) + (0*2-3) = 6.25

Examples:

Convert the decimal number 30.275 to binary form

(30.275)10 = (11110.01000110)2

0.275 * 2 0.55 0

0.55 * 2 1.10 1

0.10 * 2 0.20 0

0.20 * 2 0.40 0

0.40 * 2 0.80 0

0.80 * 2 1.60 1

0.60 * 2 1.20 1

0.20 * 2 0.40 0

In fixed point arithmetic =, the negative numbers are represented by 3 forms.

1. Sign-magnitude form

2. One’s complement form

3. Two’s complement form

1.1 Sign-magnitude form:

 Here an additional bit called sign bit is added as MSB.

o If this bit is zero It is a positive number

o If this bit is one It is a positive number

 For example

o 1.75 is represented as 01.110000.

o -1.75 is represented as 11.110000

1.2 One’s complement form:

 Here the positive number is represented same as that in sign magnitude form.

 But the negative number is obtained by complementing all the bits of the positive number

 For eg: the decimal number -0.875 can be represented as

o (0.875)10=(0.111000)2

o (-0.875)10=(1.000111)2 0.111000

↓ ↓↓↓↓↓↓ (Complement each bit)

1.000111

anu sree
Typewritten text
Rohini College of Engineering and Technology

anu sree
Typewritten text
EC8553-DISCRETE TIME SIGNAL PROCESSING

96

1.3 Two’s complement form:

 Here the positive numbers are represented as same in sign magnitude and one’s complement form.

 The negative numbers are obtained by complementing all the bits of the positive number and adding

one to the least significant bit

(0.875)10=(0.111000)2

 ↓ ↓↓↓↓↓↓ (Complement each bit)

 1.000111

+ 1

 1.001000

(-0.875)10=(1.001000)2

Examples:

 Find the sign magnitude, 1’s complement, 2’s complement for the given numbers.

1.
32

7

2.
8

7

3.
8

7

1.
32

7

0.21875 * 2 0.43750 0

0.43750 * 2 0.87500 0

0.87500* 2 1.750000 1

0.75* 2 1.50 1

0.50* 2 1.00 1

32

7
 =(-0.21875)10 =(1.00111)2

Sign magnitude form = 1.00111

1’s complement form = 1.11000

2’s complement form = 1.11001

2.
8

7

0.875 * 2 1.75 1

0.750 * 2 1.500 1

0.500 * 2 1.000 1

8

7
 =(-0.875)10 =(0.111)2

Sign magnitude form = 0.111

1’s complement form = 1.000

2’s complement form = 1.001

3.
8

7

Sign magnitude form = 0.111

1’s complement form = 0.111

2’s complement form = 0.111

Addition of two fixed point numbers:

 Add (0.5)10 + (0.125)10

(0.5)10 = (0.100)2

(0.125)10 = (0.001)2

(0.101)2 = (0.625)10

 Addition of two fixed point numbers causes an overflow.

For example

(0.100)2

anu sree
Typewritten text
Rohini College of Engineering and Technology

anu sree
Typewritten text
EC8553-DISCRETE TIME SIGNAL PROCESSING

97

(0.101)2

(1.001)2 = (-0.125)10 in sign magnitude form

Subtraction of two fixed point numbers:

 Subtraction of two numbers can be easily performed easily by using two’s complement representation.

 Subtract 0.25 from 0.5

0.25 * 2 0.50 0 Sign magnitude form = (0.010)2

0.50 * 2 1.00 1 1’s complement form = (1.101)2

0.00 * 2 0.00 0 2’s complement form = (1.110)2

(0.5)10 = (0.100)2

-(0.25)10 = (1.110)2 Two’s complement of -0.25

(10.010)2

Here the carry is generated after the addition. Neglect the carry bit to get the result in decimal.

(0.010)2 = (0.25)10

 Subtract 0.5 from 0.25

0.5 * 2 1.00 1 Sign magnitude form = (0.100)2

0.00 * 2 0.00 0 1’s complement form = (1.011)2

0.00 * 2 0.00 0 2’s complement form = (1.100)2

(0.25)10 = (0.010)2

 -(0.5)10 = (1.100)2

 (1.110)2

Here the carry is not generated after the addition. So the result is negative.

Multiplication in fixed point arithmetic:

 Here the sign magnitude components are separated.

 The magnitudes of the numbers are multiplied. Then the sign of the product is determined and applied to

the result.

 In the fixed point arithmetic, multiplication of two fractions results in a fraction.

 For multiplications with fractions, overflow can never occur.

 Eg:

(0.1001)2 * (0.0011)2 = (0.00011011)2

2. Floating point representation

 Here, a number ‘x’ is represented by

X=M.re

Where, M Mantissa which requires a sign bit for representing positive number and negative

numbers.

R base (or) radix

e exponent which require an additional and it may be either positive or negative.

o For eg, 278 can be represented in floating point representation.

278 =
1000

 1000 X 278
 = 0.278*103

0.278 Mantissa (M)

10 base (or) radix (r)

3 exponents (e)

 Similarly, to represent a binary floating point number

X=M.2e
 in which the fractional part of a number should fall (or) lie in the range of 1/2 to 1.

5 =
8

 8 X 5
 0.625 X23

Mantissa (M) = 0.625

Base (or) radix (r) = 2

Exponent (e) = 3

 Some decimal numbers and their floating point representations are given below:

4.5 0.5625 X 23 =0.1001 X 2011

1.5 0.75 X 21 =0.1100 X 2001

6.5 0.8125 X 23 =0.1100 X 2011

0.625 0.625 X 20 =0.1010 X 2000

anu sree
Typewritten text
Rohini College of Engineering and Technology

anu sree
Typewritten text
EC8553-DISCRETE TIME SIGNAL PROCESSING

98

 Negative floating point numbers are generally represented by considering the mantissa as a fixed point

number. The sign of the floating point number is obtained from the first bit of mantissa.

 To represent floating point in multiplication

Consider 1

11

e
rMX

2

22

e
rMX

 21

2121 *
ee

rMMXX

Example

Given 12

1 10*5.3 X ,
6

2 10*75.4X . Find the product
21XX

X=(3.5 X 4.75) 10(-12+6)

 = (16.625)10-6
 in decimal

In binary: (1.5)10 X (1.25)10 = (210.75) X (210.625)

 = 2001 X 0.1100 X 2001 X 0.1010

 = 2010 X 0.01111

Addition and subtraction:

 Here the exponent of a smaller number is adjusted until it matches the exponent of a larger number.

 Then, the mantissa are added or subtracted

 The resulting representation is rescaled so that its mantissa lies in the range 0.5 to 1.

 Eg: Add (3.0)10 & (0.125)10

(3.0)10 =2010 X 0.1100 = 1er X 1M

(0.125)10 =2000 X 0.0010 = 2e
r X 2M

Now adjust e2 Such that e1=e2

(0.125)10 =2010 X 0.0000100

Addition 2010 (0.110000 + 0.0000100) 2010 X 0.110010

Subraction 2010 X 1.001101

Compare floating point with fixed point arithmetic.

Sl.No Fixed point arithmetic Floating point arithmetic

1 Fast operation Slow operation

2 Relatively economical More expensive because of costlier hardware

3 Small dynamic range Increased Dynamic range

4 Round off errors occurs only for

addition

Round off errors can occur with addition and

multiplication

5 Overflow occur in addition Overflow does not arise

6 Used in small computers Used in large general purpose computers.

anu sree
Typewritten text
Rohini College of Engineering and Technology

anu sree
Typewritten text
EC8553-DISCRETE TIME SIGNAL PROCESSING

