MODULAR ARITHMETIC

The Modulus

- If a is an integer and n is a positive integer, we define a $\bmod \mathrm{n}$ to be the remainder when a is divided by n . The integer n is called the modulus. Thus, for any integer a, we can rewrite Equation $\mathrm{a}=\mathrm{qn}+\mathrm{r}$ as follows:

$$
\begin{aligned}
& a=q n+r \quad 0 \leq r<n ; q=\lfloor a / n\rfloor \\
& a=\lfloor a / n\rfloor \times n+(a \bmod n)
\end{aligned}
$$

- Example: ${ }^{11 \bmod 7=4 ;} \quad-11 \bmod 7=3$
- Two integers a and b are said to be congruent modulo n, if $(a \bmod n)=(b \bmod n)$.
- This is written as $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n}) \quad 73 \equiv 4(\bmod 23) ; \quad 21 \equiv-9(\bmod 10)$
- Note that if $a \equiv 0(\bmod n)$, then n / a

Properties of Congruence

1. $a \equiv b(\bmod n)$ if $n \mid(a-b)$.
2. $a \equiv b(\bmod n)$ implies $b \equiv a(\bmod n)$.
3. $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ imply $a \equiv c(\bmod n)$.

Modular Arithmetic Operations

- Modular arithmetic exhibits the following properties:

1. $[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$
2. $[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
3. $[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n$

- Example:

```
\(11 \bmod 8=3 ; 15 \bmod 8=7\)
\([(11 \bmod 8)+(15 \bmod 8)] \bmod 8=10 \bmod 8=2\)
\((11+15) \bmod 8=26 \bmod 8=2\)
\([(11 \bmod 8)-(15 \bmod 8)] \bmod 8=-4 \bmod 8=4\)
\((11-15) \bmod 8=-4 \bmod 8=4\)
\([(11 \bmod 8) \times(15 \bmod 8)] \bmod 8=21 \bmod 8=5\)
\((11 \times 15) \bmod 8=165 \bmod 8=5\)
```


Congruent numbers

- Integers that leave the same remainder when divided by the modulus m are somehow similar, however, not identical. Such numbers are called "congruent" .
- For instance, 1 and 13 and 25 and 37 are congruent mod 12 since they all leave the same remainder when divided by 12 .
- We write this as $1 \equiv 13 \equiv 25 \equiv 37 \bmod 12$. However, they are not congruent mod 13 . Why not? Yield a different remainder when divided by 13.
- Find 5 numbers that are congruent to

1) $7 \bmod 5 \quad 2,12,17,-3,-10$
2) $7 \bmod 25$
3) $17 \bmod 25$.

32,57,82,-18,-43
42,67,92,-8,-33

Euclid's algorithm

- The Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder.
- The Euclidean algorithm can be based on the following theorem: For any nonnegative integer a and any positive integer b, $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$
- Example $\operatorname{gcd}(55,22)=\operatorname{gcd}(22,55 \bmod 22)=\operatorname{gcd}(22,11)=11$

The Algorithm

- The Euclidean Algorithm for finding $\operatorname{GCD}(\mathrm{A}, \mathrm{B})$ is as follows:
- If $A=0$ then $\operatorname{GCD}(A, B)=B$, since the $\operatorname{GCD}(0, B)=B$, and we can stop.
- If $B=0$ then $G C D(A, B)=A$, since the $G C D(A, 0)=A$, and we can stop.
- Write A in quotient remainder form $(\mathrm{A}=\mathrm{B} \cdot \mathrm{Q}+\mathrm{R})$
- Find $\operatorname{GCD}(\mathrm{B}, \mathrm{R})$ using the Euclidean Algorithm since $\operatorname{GCD}(\mathrm{A}, \mathrm{B})=\mathrm{GCD}(\mathrm{B}, \mathrm{R})$

```
gcd}(18,12)=\operatorname{gcd}(12,6)=\operatorname{gcd}(6,0)=
gcd}(11,10)=\operatorname{gcd}(10,1)=\operatorname{gcd}(1,0)=
```


Example:

- Find the GCD of 270 and 192
- $\mathrm{A}=270, \mathrm{~B}=192$
- $\mathrm{A} \neq 0$
- $\quad \mathrm{B} \neq 0$
- Use long division to find that $270 / 192=1$ with a remainder of 78 . We can write this as: $270=192 * 1+78$
- Find $\operatorname{GCD}(192,78)$, since $\operatorname{GCD}(270,192)=\operatorname{GCD}(192,78)$
- $\mathrm{A}=192, \mathrm{~B}=78$
- $\mathrm{A} \neq 0$
- $\mathrm{B} \neq 0$
- Use long division to find that $192 / 78=2$ with a remainder of 36 . We can write this as: $192=78 * 2+36$
- Find $\operatorname{GCD}(78,36)$, since $\operatorname{GCD}(192,78)=\operatorname{GCD}(78,36)$
- $\mathrm{A}=78, \mathrm{~B}=36$
- $\mathrm{A} \neq 0$
- $\mathrm{B} \neq 0$
- Use long division to find that $78 / 36=2$ with a remainder of 6 . We can write this as: $78=36 * 2+6$
- Find $\operatorname{GCD}(36,6)$, since $\operatorname{GCD}(78,36)=\operatorname{GCD}(36,6)$
- $\mathrm{A}=36, \mathrm{~B}=6$
- $\mathrm{A} \neq 0$
- $\mathrm{B} \neq 0$
- Use long division to find that $36 / 6=6$ with a remainder of 0 . We can write this as: $36=6 * 6+0$
- Find $\operatorname{GCD}(6,0)$, since $\operatorname{GCD}(36,6)=\mathrm{GCD}(6,0)$
- $\mathrm{A}=6, \mathrm{~B}=0$
- $\mathrm{A} \neq 0$
- $\mathrm{B}=0, \mathrm{GCD}(6,0)=6$
- So we have shown:
- $\operatorname{GCD}(270,192)=\operatorname{GCD}(192,78)=\operatorname{GCD}(78,36)=\operatorname{GCD}(36,6)=\operatorname{GCD}(6,0)=6$
- $\operatorname{GCD}(270,192)=6$

Properties

- $\operatorname{GCD}(\mathrm{A}, 0)=\mathrm{A}$
- $\operatorname{GCD}(0, B)=\mathrm{B}$
- If $\mathrm{A}=\mathrm{B} \cdot \mathrm{Q}+\mathrm{R}$ and $\mathrm{B} \neq 0$ then $\operatorname{GCD}(\mathrm{A}, \mathrm{B})=\operatorname{GCD}(\mathrm{B}, \mathrm{R})$ where Q is an integer, R is an integer between 0 and $\mathrm{B}-1$

Congruence

- If n is a positive integer, we say the integers a and b are congruent modulo n , and write a $\equiv \mathrm{b}(\bmod \mathrm{n})$, if they have the same remainder on division by n .
- Example:
$\{\ldots,-6,1,8,15, \ldots\}$ are all congruent modulo 7 because their remainders on division by 7 equal $1 .\{\ldots,-4,4,12,20, \ldots\}$ are all congruent modulo 8 since their remainders on division by 8 equal 4.

Properties

1. $\mathrm{a} \equiv \mathrm{a}$ for any a ;
2. $\mathrm{a} \equiv \mathrm{b}$ implies $\mathrm{b} \equiv \mathrm{a}$;
3. $\mathrm{a} \equiv \mathrm{b}$ and $\mathrm{b} \equiv \mathrm{c}$ implies $\mathrm{a} \equiv \mathrm{c}$;
4. $a \equiv 0$ iff $n \mid a ;$
5. $\mathrm{a} \equiv \mathrm{b}$ and $\mathrm{c} \equiv \mathrm{d}$ implies $\mathrm{a}+\mathrm{c} \equiv \mathrm{b}+\mathrm{d}$;
6. $\mathrm{a} \equiv \mathrm{b}$ and $\mathrm{c} \equiv \mathrm{d}$ implies $\mathrm{a}-\mathrm{c} \equiv \mathrm{b}-\mathrm{d}$;
7. $\mathrm{a} \equiv \mathrm{b}$ and $\mathrm{c} \equiv \mathrm{d}$ implies $\mathrm{ac} \equiv \mathrm{bd}$;

Congruent Matrices

Two square matrices A and B are called congruent if there exists a nonsingular matrix P such that

$$
B=P^{T} A P,
$$

where P^{T} is the transpose.

Groups, rings, and fields

- Groups, rings, and fields are the fundamental elements of a branch of mathematics known as abstract algebra, or modern algebra.
- In abstract algebra, we are concerned with sets on whose elements we can operate algebraically; that is, we can combine two elements of the set, perhaps in several ways, to obtain a third element of the set.
- These operations are subject to specific rules, which define the nature of the set.
- By convention, the notation for the two principal classes of operations on set elements is usually the same as the notation for addition and multiplication on ordinary numbers

