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MODULAR ARITHMETIC 

The Modulus  

• If a is an integer and n is a positive integer, we define a mod n to be the remainder when a 

is divided by n . The integer n is called the modulus. Thus, for any integer a , we can 

rewrite Equation a=qn+r as follows: 

  

• Example:  

• Two integers a and b are said to be congruent modulo n, if (a mod n)=(b mod n).  

• This is written as a≡b (mod n)  

• Note that if a ≡0(mod n), then n/a 

Properties of Congruence 

 

Modular Arithmetic Operations 

• Modular arithmetic exhibits the following properties: 

 

• Example: 

 

Congruent numbers  

• Integers that leave the same remainder when divided by the modulus m are somehow 

similar, however, not identical. Such numbers are called "congruent" .  
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• For instance, 1 and 13 and 25 and 37 are congruent mod 12 since they all leave the same 

remainder when divided by 12.  

• We write this as 1 ≡ 13 ≡ 25 ≡ 37 mod 12. However, they are not congruent mod 13. 

Why not?  Yield a different remainder when  divided by 13.  

• Find 5 numbers that are congruent to 

1) 7 mod 5                                      2,12,17,-3,-10 

2) 7 mod 25                                    32,57,82,-18,-43 

3) 17 mod 25.                                 42,67,92,-8,-33   

Euclid’s algorithm 

• The Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing 

the greatest common divisor (GCD) of two integers (numbers), the largest number that 

divides them both without a remainder. 

• The Euclidean algorithm can be based on the following theorem: For any nonnegative 

integer a and any positive integer b , 

 gcd(a,b) = gcd(b, a mod b) 

• Example  

The Algorithm 

• The Euclidean Algorithm for finding GCD(A,B) is as follows: 

• If A = 0 then GCD(A,B)=B, since the GCD(0,B)=B, and we can stop.   

• If B = 0 then GCD(A,B)=A, since the GCD(A,0)=A, and we can stop.   

• Write A in quotient remainder form (A = B⋅Q + R) 

• Find GCD(B,R) using the Euclidean Algorithm since GCD(A,B) = GCD(B,R) 

 

Example: 

• Find the GCD of 270 and 192 

• A=270, B=192 

• A ≠0 

• B ≠0 
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• Use long division to find that 270/192 = 1 with a remainder of 78. We can write 

this as: 270 = 192 * 1 +78 

• Find GCD(192,78), since GCD(270,192)=GCD(192,78) 

• A=192, B=78 

• A ≠0 

• B ≠0 

• Use long division to find that 192/78 = 2 with a remainder of 36. We can write 

this as: 192 = 78 * 2 + 36 

• Find GCD(78,36), since GCD(192,78)=GCD(78,36) 

• A=78, B=36 

• A ≠0 

• B ≠0 

• Use long division to find that 78/36 = 2 with a remainder of 6. We can write this 

as: 78 = 36 * 2 + 6 

• Find GCD(36,6), since GCD(78,36)=GCD(36,6) 

• A=36, B=6 

• A ≠0 

• B ≠0 

• Use long division to find that 36/6 = 6 with a remainder of 0. We can write this 

as: 36 = 6 * 6 + 0 

• Find GCD(6,0), since GCD(36,6)=GCD(6,0) 

• A=6, B=0 

• A ≠0 

• B =0, GCD(6,0)=6 

• So we have shown: 

• GCD(270,192) = GCD(192,78) = GCD(78,36) = GCD(36,6) = GCD(6,0) = 6 

• GCD(270,192) = 6 

Properties 

• GCD(A,0) = A 

• GCD(0,B) = B 
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• If A = B⋅Q + R and B≠0 then GCD(A,B) = GCD(B,R) where Q is an integer, R is an 

integer between 0 and B-1 

Congruence 

• If n is a positive integer, we say the integers a and b are congruent modulo n, and write a 

≡ b (mod n), if they have the same remainder on division by n.   

• Example: 

 {…,−6,1,8,15,…} are all congruent modulo 7 because their remainders on division by 7 

equal 1. {…,−4,4,12,20,…} are all congruent modulo 8 since their remainders on division by 8 

equal 4. 

Properties 

1. a≡a for any a; 

2. a≡b implies b≡a; 

3. a≡b and b≡c implies a≡c; 

4. a≡0 iff n|a; 

5. a≡b and c≡d implies a+c≡b+d; 

6. a≡b and c≡d implies a−c≡b−d; 

7. a≡b and c≡d implies ac≡bd; 

Congruent Matrices 

Two square matrices A and B are called congruent if there exists a nonsingular matrix  P such 

that 

  

where   PT    is the transpose. 

Groups, rings, and fields 

• Groups, rings, and fields are the fundamental elements of a branch of mathematics known 

as abstract algebra, or modern algebra.  

• In abstract algebra, we are concerned with sets on whose elements we can operate 

algebraically; that is, we can combine two elements of the set, perhaps in several ways, to 

obtain a third element of the set.  

• These operations are subject to specific rules, which define the nature of the set.  

• By convention, the notation for the two principal classes of operations on set elements is 

usually the same as the notation for addition and multiplication on ordinary numbers 
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