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2.1 ARITHMETIC 

     2.1.1 INTRODUCTION 

Data is manipulated by using the arithmetic instructions in 

digital computers to give solution for the computation problems. The 

addition, subtraction, multiplication and division are the four basic 

arithmetic operations. Arithmetic processing unit is responsible for 

executing these operations and it is located in central processing unit. 

The arithmetic instructions are performed on binary or decimal 

data. Fixed-point numbers are used to represent integers or 

fractions. These numbers can be signed or unsigned negative 

numbers. A wide range of arithmetic operations can be derived from 

the basic operations. 

     2.1.2 Signed and Unsigned Numbers: 

Signed numbers: 

These numbers require an arithmetic sign. The most 

significant bit of a binary number is used to represent the sign bit. If 

the sign bit is equal to zero, the signed binary number is positive; 

otherwise, it is negative. The remaining bits represent the actual number. 

The negative numbers may be represented either in a signed 

magnitude or signed complement representation. There are three ways 

of representing negative fixed point 

• Binary numbers signed magnitude 

• Signed 1’s complement 

• Signed 2’s complement 

Unsigned binary numbers: 

These are positive numbers and thus do not require an 

arithmetic sign. An m-bit unsigned number represents all numbers in 

the range 0 to 2m ╉1. For example, the range of 16-bit unsigned binary 

numbers is from 0 to 65,53510 in decimal and from 0000 to FFFF16 in 
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hexadecimal. 

Signed Magnitude Representation: 

The most significant bit (MSB) represents the sign. A 1 in the 

MSB bit position denotes a negative number and 0 denotes a positive 

number. The remaining n •1 bits are preserved and represent the 

magnitude of the number. 

Examples: 

 

 

Number 

 

 

 

Signed Magnitude Representation 

+

3 

0011 

-3 1011 

0 0000 

-0 1011 

5 0101 

-5 1101 

 

One’s Complement Representation: 

In one’s complement, positive numbers remain unchanged as 

before with the sign- magnitude  numbers.  Negative  numbers  are  

represented  by  taking  the  one’s  complement (inversion, negation) 

of the unsigned positive number. Since positive numbers always 

start with a 0, the complement will always start with a 1 to indicate a 

negative number. 

The one’s complement of a negative binary number is the complement of 

its positive counterpart, so to take the one╆s complement of a binary 

number. 
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Number One’s complement Representation 

00001000 (+8) 11110111 

10001000(-8) 01110111 

00001100(+12) 11110011 

10001100(-12) 01110011 

 

Two’s Complement Representation: 

In two’s  complement,  the  positive  numbers  are  exactly  the  

same  as  before  for unsigned binary numbers. A negative number, is 

represented by a binary number, which when added to its corresponding 

positive equivalent results in zero. 

In two’s complement form, a negative number is the 2’s 

complement of its positive number with the subtraction of two 

numbers being A – B = A + (2’s c complement of B) using much  

the  same  process  as  before  as  basically,  two’s  complement  is  

adding 1  to  one’s complement of the number. 

The main difference between 12 s complement and 22 s 

complement is that 12 s complement has two representations of 0 

(+0): 00000000, and (-0): 11111111. In 22 s complement, there is 

only one representation for zero: 00000000 (0). 

+0: 00000000 

2’s complement of -0: 

-0: 00000000 (Signed magnitude representation) 

11111111 (1’s complement representation) 

11111111 + 1= 00000000 (2’scomplement representation) 

These shows in 2’scomplement representation both +0 and -0 

takes same value. This solves the double-zero problem, which existed in 

the 1’s complement. 
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Example 2.1: Convert 210 and -210 to 32 bit binary numbers. 

+2= 0000 0000 0000 0010 (16 bits) 

= 0000 0000 0000 0000 0000 0000 0000 0010 (32 bits) 

It is converted to a 32-bit number by making 16 copies of the value in the 

most significant bit 

(0) and placing that in the left-

hand half of the word. 2=0000 

0000 0000 0010 

-2=1’s complement of  2 +1 

1111 1111 1111 1101 (1’s complement of 2) + 1 

= 1111 1111 1111 1110 (16 bits) 

= 1111 1111 1111 1111 1111 1111 1111 1110 (32 bits) 

To convert to 32 bit number copy the digit in the MSB of the 16 bit 

number for 16 times and fill the left half. 

2.1.3 FIXED POINT ARITHMETIC 

 

This is a common method of integer representation is sign and 

magnitude representation. One bit is used for denoting the sign and 

the remaining bits denote the magnitude. With 7 bits reserved for 

the magnitude, the largest and smallest numbers represented are 

+127 and –127. Fixed-point numbers are useful for representing 

fractional values, usually in base 2 or base 10, when the executing 

processor has no floating point unit (FPU) or if fixed-point provides 

improved performance or accuracy for the application at hand. Most 

low-cost embedded microprocessors and microcontrollers do not have 

an FPU. 

A value of a fixed-point data type is essentially an integer that is 

scaled by a specific factor. The scaling factor is usually a power of 10 

A fixed-point number representation is a real data type for a number that has a fixed 

number of digits after the radix point or decimal point. 
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(for human convenience) or a power of 2 (for computational 

efficiency). However, other scaling factors may be used occasionally, e.g. 

a time value in hours may be represented as a fixed-point type with a 

scale factor of 1/3600 to obtain values with one-second accuracy. The 

maximum value of a fixed-point type is the largest value that can be 

represented in the underlying integer type, multiplied by the scaling 

factor; and similarly for the minimum value. 

Example: 

The value 1.23 can be represented as 1230 in a fixed-point data 

type with scaling factor of 1/1000. 

Precision loss and overflow 

 The fixed point operations can produce results that have more 

bits than the operands there is possibility for information loss. 

 In order to fit the result into the same number of bits as the 

operands, the answer must be rounded or truncated. 

 Fractional bits lost below this value represent a precision loss 

which is common in fractional multiplication. 

 If any integer bits are lost, however, the value will be radically 

inaccurate. 

 Some operations, like divide, often have built-in result limiting 

so that any positive overflow results in the largest possible 

number that can be represented by the current format. 

 Likewise, negative overflow results in the largest negative 

number represented by the current format. This built in limiting 

is often referred to as saturation. 

 Some processors support a hardware overflow flag that can generate 

an exception on 

the occurrence of an overflow, but it is usually too late to salvage 

the proper result at this point. 


