ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

MAEKAWA*‘s ALGORITHM

Macekawa’s Algorithm is quorum based approach to ensure mutual exclusion in
distributed systems.

In permission based algorithms like Lamport’s Algorithm, Ricart-Agrawala
Algorithm etc. a site request permission from every other site but in quorum based
approach, a site does not request permission from every other site but from a subset of
sites which is called quorum.

Three type of messages (REQUEST, REPLY and RELEASE) are used.

A site send a REQUEST message to all other site in its request set or quorum to get
their permission to enter critical section.

A site send a REPLY message to requesting site to give its permission to enter the

critical section.

A site send a RELEASE message to all other site in its request set or quorum upon
exiting the critical section.

Reqguesting the critical section:

(a) A site 5; requests access to the CS by sending REQUEST({) messages
to all sites in its request set R,.

(b) When a site §; receives the REQUEST(i) message, it sends a REPLY ()
message to §; provided it hasn’t sent a REPLY message to a site since
its receipt of the last RELEASE message. Otherwise, it queues up the
REQUESTI({) for later consideration.

Executing the critical section:

(c) Site §; executes the CS only after it has received a REPLY message from
every site in R,

Releasing the critical section:

(d) After the execution of the CS is over. site §; sends a RELEASE({)
message o every site in K.

(e) When a site §; receives a RELEASE(i) message from site §;, it sends
a REPLY message to the next site waiting in the gueue and deletes that
eniry from the queue. If the queue is empty, then the site updates its state
to reflect that it has not sent out any REPLY message since the receipt
of the last RELEASE message.

Fig : Maekawa‘s Algorithm

The following are the conditions for Maekawa’s algorithm:

M1
M2
M3
M4

(Vivj:i#j. 1<i.j<N R, NR; #4).
(VMi:1=i=N:i:S§ €R)

(Vi:1=i=N: |R|=K).

Any site Sj is contained in K number of Ris, 1 <i,j <N

CS8603 DISTRIBUTED SYSTEMS

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Maekawa used the theory of projective planes and showed that N = K(K — 1)+ 1. This

relation gives |Ril= VN.

To enter Critical section:

When a site S; wants to enter the critical section, it sends a request message
REQUEST(i) to all other sites in the request set Ri.

When a site S; receives the request message REQUEST(i) from site S;, it returns a
REPLY message to site S; if it has not sent a REPLY message to the site from the
time it received the last RELEASE message. Otherwise, it queues up the request.

To execute the critical section:

A site S; can enter the critical section if it has received the REPLY message from all
the site in request set R;

To release the critical section:

When a site S; exits the critical section, it sends RELEASE(i) message to all other
sites in request set R;

When' a site S; receives the RELEASE(i) message from site Sj, it send REPLY
message to the next site waiting in the queue and deletes that entry from the queue

In case queue is empty, site S; update its status to show that it has not sent any
REPLY message since the receipt of the last RELEASE message.

Correctness

Theorem: Maekawa’s algorithm achieves mutual exclusion.

Proof:

Proof is by contradiction.

Suppose two sites Si and Sj are concurrently executing the CS.

This means site Si received a REPLY message from all sites in Ri and concurrently
site Sj was able to receive a REPLY message from all sites in Rj .

If Ri N Rj = {Sk }, then site Sk must have sent REPLY messages to both Si and S;j

concurrently, which is a contradiction

Message Complexity:

Maekawa’s Algorithm requires invocation of 3VN messages per critical section execution as

the size of a request set is YN. These 3VN messages involves.

VN request messages
N reply messages

VN release messages

CS8603 DISTRIBUTED SYSTEMS

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Drawbacks of Maekawa’s Algorithm:
This algorithm is deadlock prone because a site is exclusively locked by other sites
and requests are not prioritized by their timestamp.

Performance:

Synchronization delay is equal to twice the message propagation delay time. It requires 3Vn

messages per critical section execution.

CS8603 DISTRIBUTED SYSTEMS

